多重激活并行卷积网络联合t-SNE对轻度认知障碍的分类

Harsh Bhasin, R. Agrawal
{"title":"多重激活并行卷积网络联合t-SNE对轻度认知障碍的分类","authors":"Harsh Bhasin, R. Agrawal","doi":"10.1109/BIBE52308.2021.9635485","DOIUrl":null,"url":null,"abstract":"The classification of Mild Cognitive Impairment can be done using 2-D CNN, which take a single slice at a time as input and do not consider pixel information from adjacent slices or spatial correlation amongst the slices of the brain volume or 3-D CNN, which requires huge computation time and memory as a significantly large number of parameters involved in 3D-CNN in comparison to 2D-CNN. To reduce the spatial correlation, computational complexity, and memory requirement, we use t-Distributed Stochastic Neighbor Embedding (t-SNE) on MRI volume to reduce its dimensions. Also, we use parallel CNN instead of sequential to analyze MRI volumes and a combination of RELU, sigmoid, and SIREN activation functions to learn better features for the classification of MCI. To check the efficacy of the proposed t-SNE Multiple-Activation Parallel Convolution Network, experiments are performed on publicly available Alzheimer's Disease Neuroimaging Initiative dataset, and performance is compared with existing methods. We obtain classification accuracy of 94.15 and 94.89 on MCI-C Vs. MCI-NC data and MCI Vs. Controls data respectively.","PeriodicalId":343724,"journal":{"name":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"24 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple-Activation Parallel Convolution Network in Combination with t-SNE for the Classification of Mild Cognitive Impairment\",\"authors\":\"Harsh Bhasin, R. Agrawal\",\"doi\":\"10.1109/BIBE52308.2021.9635485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The classification of Mild Cognitive Impairment can be done using 2-D CNN, which take a single slice at a time as input and do not consider pixel information from adjacent slices or spatial correlation amongst the slices of the brain volume or 3-D CNN, which requires huge computation time and memory as a significantly large number of parameters involved in 3D-CNN in comparison to 2D-CNN. To reduce the spatial correlation, computational complexity, and memory requirement, we use t-Distributed Stochastic Neighbor Embedding (t-SNE) on MRI volume to reduce its dimensions. Also, we use parallel CNN instead of sequential to analyze MRI volumes and a combination of RELU, sigmoid, and SIREN activation functions to learn better features for the classification of MCI. To check the efficacy of the proposed t-SNE Multiple-Activation Parallel Convolution Network, experiments are performed on publicly available Alzheimer's Disease Neuroimaging Initiative dataset, and performance is compared with existing methods. We obtain classification accuracy of 94.15 and 94.89 on MCI-C Vs. MCI-NC data and MCI Vs. Controls data respectively.\",\"PeriodicalId\":343724,\"journal\":{\"name\":\"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)\",\"volume\":\"24 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BIBE52308.2021.9635485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE52308.2021.9635485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

轻度认知障碍的分类可以使用二维CNN进行,二维CNN每次只输入一个切片,不考虑相邻切片的像素信息,也不考虑脑容量或三维CNN切片之间的空间相关性,与2D-CNN相比,3D-CNN涉及的参数数量明显更多,需要大量的计算时间和内存。为了降低空间相关性、计算复杂度和内存需求,我们在MRI体积上使用t-分布随机邻居嵌入(t-SNE)来降低其维数。此外,我们使用并行CNN代替顺序CNN来分析MRI体积,并结合RELU、sigmoid和SIREN激活函数来学习更好的MCI分类特征。为了验证所提出的t-SNE多激活并行卷积网络的有效性,在公开的阿尔茨海默病神经成像倡议数据集上进行了实验,并与现有方法进行了性能比较。我们在MCI- c与MCI- nc数据和MCI与Controls数据上分别获得了94.15和94.89的分类准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple-Activation Parallel Convolution Network in Combination with t-SNE for the Classification of Mild Cognitive Impairment
The classification of Mild Cognitive Impairment can be done using 2-D CNN, which take a single slice at a time as input and do not consider pixel information from adjacent slices or spatial correlation amongst the slices of the brain volume or 3-D CNN, which requires huge computation time and memory as a significantly large number of parameters involved in 3D-CNN in comparison to 2D-CNN. To reduce the spatial correlation, computational complexity, and memory requirement, we use t-Distributed Stochastic Neighbor Embedding (t-SNE) on MRI volume to reduce its dimensions. Also, we use parallel CNN instead of sequential to analyze MRI volumes and a combination of RELU, sigmoid, and SIREN activation functions to learn better features for the classification of MCI. To check the efficacy of the proposed t-SNE Multiple-Activation Parallel Convolution Network, experiments are performed on publicly available Alzheimer's Disease Neuroimaging Initiative dataset, and performance is compared with existing methods. We obtain classification accuracy of 94.15 and 94.89 on MCI-C Vs. MCI-NC data and MCI Vs. Controls data respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural, antimicrobial, and molecular docking study of 3-(1-(4-hydroxyphenyl)amino) ethylidene)chroman-2,4-dione and its corresponding Pd complex Multiple-Activation Parallel Convolution Network in Combination with t-SNE for the Classification of Mild Cognitive Impairment Analyzing the Impact of Resampling Approaches on Chest X-Ray Images for COVID-19 Identification in a Local Hierarchical Classification Scenario Analysis of knee joint forces in different types of jumps of top futsal players at the beginning and at the end of the preparation period Design and evaluation of a noninvasive tongue-computer interface for individuals with severe disabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1