I. Kumazawa, Kyohei Sugiyama, Tsukasa Hayashi, Yasuhiro Takatori, Shunsuke Ono
{"title":"各种形式的触觉反馈显示在平板电脑的背面:通过使用音频信号来控制执行器来最小化延迟","authors":"I. Kumazawa, Kyohei Sugiyama, Tsukasa Hayashi, Yasuhiro Takatori, Shunsuke Ono","doi":"10.1109/VR.2015.7223432","DOIUrl":null,"url":null,"abstract":"The front face of the tablet style smartphone or computer is dominated by a touch screen. As a finger operation on the touch screen disturbs its visibility, it is assumed a finger touches the screen instantly. Under such restriction, use of the rear surface of the tablet for tactile display is promising as the fingers constantly touch the back face and feel the tactile information. In our presentation, various tactile feedback mechanisms implemented on the back face are demonstrated and the latency of the feedback and its effect on the usability are evaluated for different communication means to control actuators such as wireless LAN, Bluetooth and audio signals. It is shown that the audio signal is promising to generate quick tactile feedback.","PeriodicalId":231501,"journal":{"name":"2015 IEEE Virtual Reality (VR)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Various forms of tactile feedback displayed on the back of the tablet: Latency minimized by using audio signal to control actuators\",\"authors\":\"I. Kumazawa, Kyohei Sugiyama, Tsukasa Hayashi, Yasuhiro Takatori, Shunsuke Ono\",\"doi\":\"10.1109/VR.2015.7223432\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The front face of the tablet style smartphone or computer is dominated by a touch screen. As a finger operation on the touch screen disturbs its visibility, it is assumed a finger touches the screen instantly. Under such restriction, use of the rear surface of the tablet for tactile display is promising as the fingers constantly touch the back face and feel the tactile information. In our presentation, various tactile feedback mechanisms implemented on the back face are demonstrated and the latency of the feedback and its effect on the usability are evaluated for different communication means to control actuators such as wireless LAN, Bluetooth and audio signals. It is shown that the audio signal is promising to generate quick tactile feedback.\",\"PeriodicalId\":231501,\"journal\":{\"name\":\"2015 IEEE Virtual Reality (VR)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 IEEE Virtual Reality (VR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VR.2015.7223432\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE Virtual Reality (VR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VR.2015.7223432","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Various forms of tactile feedback displayed on the back of the tablet: Latency minimized by using audio signal to control actuators
The front face of the tablet style smartphone or computer is dominated by a touch screen. As a finger operation on the touch screen disturbs its visibility, it is assumed a finger touches the screen instantly. Under such restriction, use of the rear surface of the tablet for tactile display is promising as the fingers constantly touch the back face and feel the tactile information. In our presentation, various tactile feedback mechanisms implemented on the back face are demonstrated and the latency of the feedback and its effect on the usability are evaluated for different communication means to control actuators such as wireless LAN, Bluetooth and audio signals. It is shown that the audio signal is promising to generate quick tactile feedback.