{"title":"基于深度强化学习的图上混合网络不确定自主探索","authors":"Zhiwen Zhang, Chenghao Shi, Zhiwen Zeng, Hui Zhang","doi":"10.1109/icicn52636.2021.9673941","DOIUrl":null,"url":null,"abstract":"This paper mainly focuses on the autonomous exploration of unknown environments for mobile robots with deep reinforcement learning (DRL). To accurately model the environment, an exploration graph is constructed. Then, we propose a novel S-GRU network combing graph convolutional network (GCN) and gated recurrent units (GRU) based on the exploration graph to extract hybrid features. Both the spatial information and the historical information can be extracted by using S-GRU, which could help the optimal action selection by employing DRL. Specifically, In S-GRU, one GRU is performed to extract the inner information related to the historical trajectory, and another is used to combine the current and historical inner information as the current state feature. Simulation experimental results show that our approach is better than GCN-based and information entropy-based approaches on effectiveness, accuracy, and generalization.","PeriodicalId":231379,"journal":{"name":"2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Reinforcement Learning Based Autonomous Exploration under Uncertainty with Hybrid Network on Graph\",\"authors\":\"Zhiwen Zhang, Chenghao Shi, Zhiwen Zeng, Hui Zhang\",\"doi\":\"10.1109/icicn52636.2021.9673941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper mainly focuses on the autonomous exploration of unknown environments for mobile robots with deep reinforcement learning (DRL). To accurately model the environment, an exploration graph is constructed. Then, we propose a novel S-GRU network combing graph convolutional network (GCN) and gated recurrent units (GRU) based on the exploration graph to extract hybrid features. Both the spatial information and the historical information can be extracted by using S-GRU, which could help the optimal action selection by employing DRL. Specifically, In S-GRU, one GRU is performed to extract the inner information related to the historical trajectory, and another is used to combine the current and historical inner information as the current state feature. Simulation experimental results show that our approach is better than GCN-based and information entropy-based approaches on effectiveness, accuracy, and generalization.\",\"PeriodicalId\":231379,\"journal\":{\"name\":\"2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icicn52636.2021.9673941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 9th International Conference on Information, Communication and Networks (ICICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icicn52636.2021.9673941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep Reinforcement Learning Based Autonomous Exploration under Uncertainty with Hybrid Network on Graph
This paper mainly focuses on the autonomous exploration of unknown environments for mobile robots with deep reinforcement learning (DRL). To accurately model the environment, an exploration graph is constructed. Then, we propose a novel S-GRU network combing graph convolutional network (GCN) and gated recurrent units (GRU) based on the exploration graph to extract hybrid features. Both the spatial information and the historical information can be extracted by using S-GRU, which could help the optimal action selection by employing DRL. Specifically, In S-GRU, one GRU is performed to extract the inner information related to the historical trajectory, and another is used to combine the current and historical inner information as the current state feature. Simulation experimental results show that our approach is better than GCN-based and information entropy-based approaches on effectiveness, accuracy, and generalization.