{"title":"中国、美国、巴西和埃塞俄比亚的冠状病毒传染动力学建模与预测","authors":"T. Tulu, I. Leong, Zunyou Wu","doi":"10.11648/J.SJAMS.20200805.13","DOIUrl":null,"url":null,"abstract":"The COVID-19 pandemic is a global pandemic of coronavirus disease 2019, caused by severe acute respiratory syndrome coronavirus 2 (SARS CoV 2). The outbreak was first identified in Wuhan, China, in December 2019. In this article, we investigate the problem of modelling the trend of the current Coronavirus disease 2019 pandemic in China, USA, Ethiopia and Brazil along time. Two different models were developed using Bayesian Markov chain Monte Carlo simulation methods. The models fitted included Poisson autoregressive as a function of a short-term dependence only and Poisson autoregressive as a function of both a short-term dependence and a long-term dependence. The models can be employed to understand the contagion dynamics of the COVID-19, which can heavily impact health, economy and finance. The result indicates whether disease has an upward/downward trend, and where about every country is on that trend, all of which can help the public decision-makers to better plan health policy interventions and take the appropriate actions to control the spreading of the virus.","PeriodicalId":422938,"journal":{"name":"Science Journal of Applied Mathematics and Statistics","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling and Predicting Corona Contagion Dynamics in China, USA, Brazil & Ethiopia\",\"authors\":\"T. Tulu, I. Leong, Zunyou Wu\",\"doi\":\"10.11648/J.SJAMS.20200805.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The COVID-19 pandemic is a global pandemic of coronavirus disease 2019, caused by severe acute respiratory syndrome coronavirus 2 (SARS CoV 2). The outbreak was first identified in Wuhan, China, in December 2019. In this article, we investigate the problem of modelling the trend of the current Coronavirus disease 2019 pandemic in China, USA, Ethiopia and Brazil along time. Two different models were developed using Bayesian Markov chain Monte Carlo simulation methods. The models fitted included Poisson autoregressive as a function of a short-term dependence only and Poisson autoregressive as a function of both a short-term dependence and a long-term dependence. The models can be employed to understand the contagion dynamics of the COVID-19, which can heavily impact health, economy and finance. The result indicates whether disease has an upward/downward trend, and where about every country is on that trend, all of which can help the public decision-makers to better plan health policy interventions and take the appropriate actions to control the spreading of the virus.\",\"PeriodicalId\":422938,\"journal\":{\"name\":\"Science Journal of Applied Mathematics and Statistics\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Journal of Applied Mathematics and Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.SJAMS.20200805.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Journal of Applied Mathematics and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.SJAMS.20200805.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling and Predicting Corona Contagion Dynamics in China, USA, Brazil & Ethiopia
The COVID-19 pandemic is a global pandemic of coronavirus disease 2019, caused by severe acute respiratory syndrome coronavirus 2 (SARS CoV 2). The outbreak was first identified in Wuhan, China, in December 2019. In this article, we investigate the problem of modelling the trend of the current Coronavirus disease 2019 pandemic in China, USA, Ethiopia and Brazil along time. Two different models were developed using Bayesian Markov chain Monte Carlo simulation methods. The models fitted included Poisson autoregressive as a function of a short-term dependence only and Poisson autoregressive as a function of both a short-term dependence and a long-term dependence. The models can be employed to understand the contagion dynamics of the COVID-19, which can heavily impact health, economy and finance. The result indicates whether disease has an upward/downward trend, and where about every country is on that trend, all of which can help the public decision-makers to better plan health policy interventions and take the appropriate actions to control the spreading of the virus.