{"title":"理想金属介电光子晶体的参数研究","authors":"David Allemeier, M. White","doi":"10.1117/12.2632238","DOIUrl":null,"url":null,"abstract":"Metal-dielectric photonic crystals (MDPCs) represent a class of photonic structures which offer unique types of control over the propagation of light. Recent work has demonstrated the ability to form MDPCs using stacked microcavity OLEDs, which enable the generation of complex electroluminescence profiles consisting of multiple emission peaks. Here, we analyze the photonic band formation of idealized MDPCs. We systematically examine the impact of materials parameters on the density of states of the photonic bands and transmission losses through the crystal. We demonstrate the formation and collapse of a Peierls band-gap and the breakdown of the unit cell approach.","PeriodicalId":145218,"journal":{"name":"Organic Photonics + Electronics","volume":"130 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametric investigation of ideal metal-dielectric photonic crystals\",\"authors\":\"David Allemeier, M. White\",\"doi\":\"10.1117/12.2632238\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metal-dielectric photonic crystals (MDPCs) represent a class of photonic structures which offer unique types of control over the propagation of light. Recent work has demonstrated the ability to form MDPCs using stacked microcavity OLEDs, which enable the generation of complex electroluminescence profiles consisting of multiple emission peaks. Here, we analyze the photonic band formation of idealized MDPCs. We systematically examine the impact of materials parameters on the density of states of the photonic bands and transmission losses through the crystal. We demonstrate the formation and collapse of a Peierls band-gap and the breakdown of the unit cell approach.\",\"PeriodicalId\":145218,\"journal\":{\"name\":\"Organic Photonics + Electronics\",\"volume\":\"130 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic Photonics + Electronics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2632238\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic Photonics + Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2632238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parametric investigation of ideal metal-dielectric photonic crystals
Metal-dielectric photonic crystals (MDPCs) represent a class of photonic structures which offer unique types of control over the propagation of light. Recent work has demonstrated the ability to form MDPCs using stacked microcavity OLEDs, which enable the generation of complex electroluminescence profiles consisting of multiple emission peaks. Here, we analyze the photonic band formation of idealized MDPCs. We systematically examine the impact of materials parameters on the density of states of the photonic bands and transmission losses through the crystal. We demonstrate the formation and collapse of a Peierls band-gap and the breakdown of the unit cell approach.