{"title":"洪水演化:将演化的基材从踏脚石的路径变为岩石的区域","authors":"D. Shorten, G. Nitschke","doi":"10.1145/2598394.2605675","DOIUrl":null,"url":null,"abstract":"We present ongoing research that is an extension of novelty search, flood evolution. This technique aims to improve evolutionary algorithms by presenting them with large sets of problems, as opposed to individual ones. If the older approach of incremental evolution were analogous to moving over a path of stepping stones, then this approach is similar to navigating a rocky field. The method is discussed and preliminary results are presented.","PeriodicalId":298232,"journal":{"name":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","volume":"22 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flood evolution: changing the evolutionary substrate from a path of stepping stones to a field of rocks\",\"authors\":\"D. Shorten, G. Nitschke\",\"doi\":\"10.1145/2598394.2605675\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present ongoing research that is an extension of novelty search, flood evolution. This technique aims to improve evolutionary algorithms by presenting them with large sets of problems, as opposed to individual ones. If the older approach of incremental evolution were analogous to moving over a path of stepping stones, then this approach is similar to navigating a rocky field. The method is discussed and preliminary results are presented.\",\"PeriodicalId\":298232,\"journal\":{\"name\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"volume\":\"22 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2598394.2605675\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Companion Publication of the 2014 Annual Conference on Genetic and Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2598394.2605675","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Flood evolution: changing the evolutionary substrate from a path of stepping stones to a field of rocks
We present ongoing research that is an extension of novelty search, flood evolution. This technique aims to improve evolutionary algorithms by presenting them with large sets of problems, as opposed to individual ones. If the older approach of incremental evolution were analogous to moving over a path of stepping stones, then this approach is similar to navigating a rocky field. The method is discussed and preliminary results are presented.