超临界CO2与气体混合用于暖环境下动力循环的初步研究

Seungjoon Baik, Jeong-Ik Lee
{"title":"超临界CO2与气体混合用于暖环境下动力循环的初步研究","authors":"Seungjoon Baik, Jeong-Ik Lee","doi":"10.1115/GT2018-76386","DOIUrl":null,"url":null,"abstract":"The supercritical carbon dioxide (S-CO2) Brayton power cycle has been receiving worldwide attention due to the high thermal efficiency and compact system configuration. Because of the incompressible liquid like characteristic (e.g. high density, low compressibility) of the CO2 near the critical point (30.98 °C, 7.38MPa), an S-CO2 Brayton cycle can achieve high efficiency by reducing compression work. In order to utilize the S-CO2 power conversion technology in various applications, such as distributed power generation and marine propulsion, air-cooled waste heat removal system is necessary. However, the critical temperature of CO2 (30.98 °C) is an intrinsic limitation on the system minimum temperature. Because of the small difference with atmospheric temperature, a large amount of cooling air flow or a very large heat exchanger is required to reach the target minimum temperature. In this paper, to improve the system efficiency and ease the problem of air-cooled waste heat removal system, the mixture of supercritical CO2 with other fluids has been studied. Also, the preliminary performance test results of CO2 mixture with pre-existing experimental facility are evaluated.","PeriodicalId":412490,"journal":{"name":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Preliminary Study of Supercritical CO2 Mixed With Gases for Power Cycle in Warm Environments\",\"authors\":\"Seungjoon Baik, Jeong-Ik Lee\",\"doi\":\"10.1115/GT2018-76386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The supercritical carbon dioxide (S-CO2) Brayton power cycle has been receiving worldwide attention due to the high thermal efficiency and compact system configuration. Because of the incompressible liquid like characteristic (e.g. high density, low compressibility) of the CO2 near the critical point (30.98 °C, 7.38MPa), an S-CO2 Brayton cycle can achieve high efficiency by reducing compression work. In order to utilize the S-CO2 power conversion technology in various applications, such as distributed power generation and marine propulsion, air-cooled waste heat removal system is necessary. However, the critical temperature of CO2 (30.98 °C) is an intrinsic limitation on the system minimum temperature. Because of the small difference with atmospheric temperature, a large amount of cooling air flow or a very large heat exchanger is required to reach the target minimum temperature. In this paper, to improve the system efficiency and ease the problem of air-cooled waste heat removal system, the mixture of supercritical CO2 with other fluids has been studied. Also, the preliminary performance test results of CO2 mixture with pre-existing experimental facility are evaluated.\",\"PeriodicalId\":412490,\"journal\":{\"name\":\"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2018-76386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 9: Oil and Gas Applications; Supercritical CO2 Power Cycles; Wind Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2018-76386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

超临界二氧化碳(S-CO2)布雷顿动力循环由于其高热效率和紧凑的系统结构而受到全世界的关注。由于在临界点(30.98℃,7.38MPa)附近CO2具有高密度、低可压缩性等不可压缩液体特性,S-CO2 Brayton循环可以通过减少压缩功来实现高效率。为了将S-CO2动力转换技术应用于分布式发电和船舶推进等各种应用,需要风冷余热排出系统。然而,CO2的临界温度(30.98°C)是系统最低温度的内在限制。由于与大气温度差小,因此需要大量的冷却风量或非常大的热交换器才能达到目标最低温度。为了提高系统效率,缓解风冷式废热排汽系统存在的问题,本文对超临界CO2与其他流体的混合进行了研究。并在已有的实验设备上对CO2混合物的初步性能测试结果进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Preliminary Study of Supercritical CO2 Mixed With Gases for Power Cycle in Warm Environments
The supercritical carbon dioxide (S-CO2) Brayton power cycle has been receiving worldwide attention due to the high thermal efficiency and compact system configuration. Because of the incompressible liquid like characteristic (e.g. high density, low compressibility) of the CO2 near the critical point (30.98 °C, 7.38MPa), an S-CO2 Brayton cycle can achieve high efficiency by reducing compression work. In order to utilize the S-CO2 power conversion technology in various applications, such as distributed power generation and marine propulsion, air-cooled waste heat removal system is necessary. However, the critical temperature of CO2 (30.98 °C) is an intrinsic limitation on the system minimum temperature. Because of the small difference with atmospheric temperature, a large amount of cooling air flow or a very large heat exchanger is required to reach the target minimum temperature. In this paper, to improve the system efficiency and ease the problem of air-cooled waste heat removal system, the mixture of supercritical CO2 with other fluids has been studied. Also, the preliminary performance test results of CO2 mixture with pre-existing experimental facility are evaluated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Use of Departure Functions to Estimate Deviation of a Real Gas From the Ideal Gas Model Design Considerations for High Pressure Boil-Off Gas (BOG) Centrifugal Compressors With Synchronous Motor Drives in LNG Liquefaction Plants An Overview of Initial Operational Experience With the Closed-Loop sCO2 Test Facility at Cranfield University Wet Gas Compressor Modeling and Performance Scaling The Effect of Blade Deflections on the Torsional Dynamic of a Wind Turbine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1