单片玻璃板表面划痕损伤的非接触式三维表征系统

Zhufeng Pan, Jian Yang, Xing-er Wang, Yige Wang, Gang Li, Xianfang Jiang
{"title":"单片玻璃板表面划痕损伤的非接触式三维表征系统","authors":"Zhufeng Pan, Jian Yang, Xing-er Wang, Yige Wang, Gang Li, Xianfang Jiang","doi":"10.47982/cgc.8.392","DOIUrl":null,"url":null,"abstract":"Glass material has been widely used in modern architecture. Scratch-induced surface damage of aged monolithic glass panel leads to the strength degradation of material and thus threatens the glass safety. Therefore, in order to accurately evaluate the strength of aged glass elements, it is crucial to extract key damage features including the damage location and depth in a precise way. This study aims to develop a non-contact stage-wise scanning method to extract 3D damage characteristics on glass surface, which can further facilitate the investigation into the associated influences on the flexural strength of glass. Coaxial double ring tests on annealed glass specimens under various magnitudes of applied loads were performed, which aimed to explore the influence of the surface damage on the flexural strength. Monocular microscope equipped with an industrial camera was used to detect damage area throughout the glass panel in the first stage rapidly. It was then followed by a chromatic confocal scanner to precisely measure the damage depth within local damage area. The results via confocal microscope scanning were considered as the reference values. It shows that the proposed method can be a potentially alternative solution instead of confocal microscope for damage quantification.","PeriodicalId":332145,"journal":{"name":"Challenging Glass Conference Proceedings","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Contact 3D Characterization System of Scratch-Induced Surface Damage on Monolithic Glass Panel\",\"authors\":\"Zhufeng Pan, Jian Yang, Xing-er Wang, Yige Wang, Gang Li, Xianfang Jiang\",\"doi\":\"10.47982/cgc.8.392\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glass material has been widely used in modern architecture. Scratch-induced surface damage of aged monolithic glass panel leads to the strength degradation of material and thus threatens the glass safety. Therefore, in order to accurately evaluate the strength of aged glass elements, it is crucial to extract key damage features including the damage location and depth in a precise way. This study aims to develop a non-contact stage-wise scanning method to extract 3D damage characteristics on glass surface, which can further facilitate the investigation into the associated influences on the flexural strength of glass. Coaxial double ring tests on annealed glass specimens under various magnitudes of applied loads were performed, which aimed to explore the influence of the surface damage on the flexural strength. Monocular microscope equipped with an industrial camera was used to detect damage area throughout the glass panel in the first stage rapidly. It was then followed by a chromatic confocal scanner to precisely measure the damage depth within local damage area. The results via confocal microscope scanning were considered as the reference values. It shows that the proposed method can be a potentially alternative solution instead of confocal microscope for damage quantification.\",\"PeriodicalId\":332145,\"journal\":{\"name\":\"Challenging Glass Conference Proceedings\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Challenging Glass Conference Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.47982/cgc.8.392\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Challenging Glass Conference Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47982/cgc.8.392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

玻璃材料在现代建筑中得到了广泛应用。老化单片玻璃板表面划痕损伤导致材料强度下降,威胁玻璃安全。因此,为了准确评估老化玻璃构件的强度,精确提取损伤位置和深度等关键损伤特征是至关重要的。本研究旨在开发一种非接触式分层扫描方法来提取玻璃表面的三维损伤特征,从而进一步研究相关损伤对玻璃抗弯强度的影响。对退火玻璃试样进行了不同载荷作用下的同轴双环试验,探讨了表面损伤对试样抗弯强度的影响。采用配备工业相机的单目显微镜快速检测第一阶段整个玻璃板的损伤区域。然后用彩色共聚焦扫描仪精确测量局部损伤区域内的损伤深度。共聚焦显微镜扫描结果可作为参考。结果表明,该方法是一种替代共聚焦显微镜的损伤定量方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-Contact 3D Characterization System of Scratch-Induced Surface Damage on Monolithic Glass Panel
Glass material has been widely used in modern architecture. Scratch-induced surface damage of aged monolithic glass panel leads to the strength degradation of material and thus threatens the glass safety. Therefore, in order to accurately evaluate the strength of aged glass elements, it is crucial to extract key damage features including the damage location and depth in a precise way. This study aims to develop a non-contact stage-wise scanning method to extract 3D damage characteristics on glass surface, which can further facilitate the investigation into the associated influences on the flexural strength of glass. Coaxial double ring tests on annealed glass specimens under various magnitudes of applied loads were performed, which aimed to explore the influence of the surface damage on the flexural strength. Monocular microscope equipped with an industrial camera was used to detect damage area throughout the glass panel in the first stage rapidly. It was then followed by a chromatic confocal scanner to precisely measure the damage depth within local damage area. The results via confocal microscope scanning were considered as the reference values. It shows that the proposed method can be a potentially alternative solution instead of confocal microscope for damage quantification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stress Distribution along the Structural Sealant Joint Length of a Cylindrically Curved Glazing Panel Restoring Hi-Tech Architecture Early-Detection of EVA Encapsulant Degradation in PV Modules Based on Vibration Frequency Analysis Panoramic Perfection: Unveiling Technical Insights from “The Henderson” in Hong Kong A Portable Technology for Measuring Haze Levels in Thick Laminated Glass Panels
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1