{"title":"使用光学相干层析成像系统和波前传感器对小型化透镜进行快速、半自动的几何和功能表征","authors":"Alfredo Velazquez Iturbide, Robert Schmitt","doi":"10.1117/12.2675885","DOIUrl":null,"url":null,"abstract":"Miniaturized lenses are increasingly utilized in a range of applications, including medical devices, optical communication, and imaging systems. The characterization of these lenses is crucial as their performance is highly dependent on their geometrical and functional properties. However, the small size of these lenses coupled with the required short measurement times, presents a significant challenge for conventional measurement techniques. Recent advances in optical coherence tomography (OCT) and Shack Hartmann wavefront sensors (SHWS) have enabled rapid, semi-automated geometric and functional characterization of miniaturized lenses when appropriate hardware, software, and algorithms are integrated. OCT is a non-invasive imaging technique that can provide high-resolution cross-sectional images of the lens, allowing the accurate measurement of its central thickness, curvature, and other geometric parameters of both surfaces. Moreover, SHWS can be used to measure the transmitted wavefront error of the lens, which is directly related to its optical performance. In this paper, we demonstrate the use of OCT and SHWS to characterize polymer and glass lenses with diameters and thicknesses of a few millimeters with spherical and aspherical shapes. Our results show that OCT is capable of accurately measuring the central thickness and surface profile of the lenses, while SHWS provides information on their wavefront aberrations. By combining these two techniques, we were able to obtain a com-prehensive characterization of the lenses' geometrical and functional properties.","PeriodicalId":422212,"journal":{"name":"Precision Optics Manufacturing","volume":"4 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast, semi-automated geometric and functional characterization of miniaturized lenses using optical coherence tomography-based systems and wavefront sensors\",\"authors\":\"Alfredo Velazquez Iturbide, Robert Schmitt\",\"doi\":\"10.1117/12.2675885\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Miniaturized lenses are increasingly utilized in a range of applications, including medical devices, optical communication, and imaging systems. The characterization of these lenses is crucial as their performance is highly dependent on their geometrical and functional properties. However, the small size of these lenses coupled with the required short measurement times, presents a significant challenge for conventional measurement techniques. Recent advances in optical coherence tomography (OCT) and Shack Hartmann wavefront sensors (SHWS) have enabled rapid, semi-automated geometric and functional characterization of miniaturized lenses when appropriate hardware, software, and algorithms are integrated. OCT is a non-invasive imaging technique that can provide high-resolution cross-sectional images of the lens, allowing the accurate measurement of its central thickness, curvature, and other geometric parameters of both surfaces. Moreover, SHWS can be used to measure the transmitted wavefront error of the lens, which is directly related to its optical performance. In this paper, we demonstrate the use of OCT and SHWS to characterize polymer and glass lenses with diameters and thicknesses of a few millimeters with spherical and aspherical shapes. Our results show that OCT is capable of accurately measuring the central thickness and surface profile of the lenses, while SHWS provides information on their wavefront aberrations. By combining these two techniques, we were able to obtain a com-prehensive characterization of the lenses' geometrical and functional properties.\",\"PeriodicalId\":422212,\"journal\":{\"name\":\"Precision Optics Manufacturing\",\"volume\":\"4 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Optics Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2675885\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Optics Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2675885","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fast, semi-automated geometric and functional characterization of miniaturized lenses using optical coherence tomography-based systems and wavefront sensors
Miniaturized lenses are increasingly utilized in a range of applications, including medical devices, optical communication, and imaging systems. The characterization of these lenses is crucial as their performance is highly dependent on their geometrical and functional properties. However, the small size of these lenses coupled with the required short measurement times, presents a significant challenge for conventional measurement techniques. Recent advances in optical coherence tomography (OCT) and Shack Hartmann wavefront sensors (SHWS) have enabled rapid, semi-automated geometric and functional characterization of miniaturized lenses when appropriate hardware, software, and algorithms are integrated. OCT is a non-invasive imaging technique that can provide high-resolution cross-sectional images of the lens, allowing the accurate measurement of its central thickness, curvature, and other geometric parameters of both surfaces. Moreover, SHWS can be used to measure the transmitted wavefront error of the lens, which is directly related to its optical performance. In this paper, we demonstrate the use of OCT and SHWS to characterize polymer and glass lenses with diameters and thicknesses of a few millimeters with spherical and aspherical shapes. Our results show that OCT is capable of accurately measuring the central thickness and surface profile of the lenses, while SHWS provides information on their wavefront aberrations. By combining these two techniques, we were able to obtain a com-prehensive characterization of the lenses' geometrical and functional properties.