手分割使用肤色和背景信息

Wei Wang, Jing Pan
{"title":"手分割使用肤色和背景信息","authors":"Wei Wang, Jing Pan","doi":"10.1109/ICMLC.2012.6359584","DOIUrl":null,"url":null,"abstract":"Precise hand segmentation is crucial for gesture-based Human-Machine Interaction. Skin color based hand segmentation using skin color models shows poor performance in complex background where similar colors of the skin and non-uniform illumination exist. We propose a new method for hand segmentation by using an adaptive skin color model and the background information around the hand. Firstly, our method captures pixel values of the hand and the background then converts them into YCbCr color space. Secondly, skin and background Gaussian models based on the color space of CbCr are proposed. Lastly, these models are taken to segment the whole image respectively, and then required for the intersection. The main contribution of the paper is that the background information is taken into account to split image in reversed side to enhance the performance. Experimental results show that our method outperforms the method that uses the skin color model only.","PeriodicalId":128006,"journal":{"name":"2012 International Conference on Machine Learning and Cybernetics","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Hand segmentation using skin color and background information\",\"authors\":\"Wei Wang, Jing Pan\",\"doi\":\"10.1109/ICMLC.2012.6359584\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Precise hand segmentation is crucial for gesture-based Human-Machine Interaction. Skin color based hand segmentation using skin color models shows poor performance in complex background where similar colors of the skin and non-uniform illumination exist. We propose a new method for hand segmentation by using an adaptive skin color model and the background information around the hand. Firstly, our method captures pixel values of the hand and the background then converts them into YCbCr color space. Secondly, skin and background Gaussian models based on the color space of CbCr are proposed. Lastly, these models are taken to segment the whole image respectively, and then required for the intersection. The main contribution of the paper is that the background information is taken into account to split image in reversed side to enhance the performance. Experimental results show that our method outperforms the method that uses the skin color model only.\",\"PeriodicalId\":128006,\"journal\":{\"name\":\"2012 International Conference on Machine Learning and Cybernetics\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 International Conference on Machine Learning and Cybernetics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLC.2012.6359584\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 International Conference on Machine Learning and Cybernetics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLC.2012.6359584","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

精确的手部分割是基于手势的人机交互的关键。基于肤色模型的手分割在肤色相似、光照不均匀的复杂背景下表现不佳。本文提出了一种基于自适应肤色模型和手周围背景信息的手部分割新方法。首先,我们的方法捕获手和背景的像素值,然后将其转换为YCbCr颜色空间。其次,提出了基于CbCr颜色空间的皮肤和背景高斯模型;最后,利用这些模型分别对整幅图像进行分割,然后求出交点。本文的主要贡献在于考虑了背景信息对图像进行反向分割,提高了分割性能。实验结果表明,该方法优于仅使用肤色模型的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hand segmentation using skin color and background information
Precise hand segmentation is crucial for gesture-based Human-Machine Interaction. Skin color based hand segmentation using skin color models shows poor performance in complex background where similar colors of the skin and non-uniform illumination exist. We propose a new method for hand segmentation by using an adaptive skin color model and the background information around the hand. Firstly, our method captures pixel values of the hand and the background then converts them into YCbCr color space. Secondly, skin and background Gaussian models based on the color space of CbCr are proposed. Lastly, these models are taken to segment the whole image respectively, and then required for the intersection. The main contribution of the paper is that the background information is taken into account to split image in reversed side to enhance the performance. Experimental results show that our method outperforms the method that uses the skin color model only.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ROBUST H∞ filtering for a class of nonlinear uncertain singular systems with time-varying delay Discriminati on between external short circuit and internal winding fault in power transformer using discrete wavelet transform and back-propagation neural network Hybrid linear and nonlinear weight Particle Swarm Optimization algorithm Transcriptional cooperativity in molecular dynamics based on normal mode analysis An efficient web document clustering algorithm for building dynamic similarity profile in Similarity-aware web caching
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1