Junichi Hongu, Hiroki Noborio, T. Koide, A. Tamura
{"title":"用图形分析方法对不同加工工艺的齿轮齿面进行风格化","authors":"Junichi Hongu, Hiroki Noborio, T. Koide, A. Tamura","doi":"10.1115/detc2019-97776","DOIUrl":null,"url":null,"abstract":"\n This study proposes a stylization method for gear tooth surface using slices of 2-dimensional spectrum. Focusing on a contour (or a slice in the z direction) of the curved surface generated by the 2-dimensinal spectrum, we could approximate the contour to a closed curve, and obtain the ‘scale’ parameter and the ‘shape’ parameter such as a radius, an aspect ratio, etc. which form the closed curve. To determine the flexibility of the proposed method for stylizing the surface texture of gear, this paper shows the approximating the 2-dimensional spectrums which are obtained by frequency analysis of the surface textures of gears with different machining processes using closed curve. As a result of the template matching using astroid, it was found that the astroid can approximate the contour of the 2-dimensinal power spectrum of the gear tooth surface with five machining processes, hob, generation grinding, form grinding, hone and barrel.","PeriodicalId":159554,"journal":{"name":"Volume 10: 2019 International Power Transmission and Gearing Conference","volume":"53 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stylization for Gear Tooth Surfaces With Different Machining Processes Using Graphic Analysis\",\"authors\":\"Junichi Hongu, Hiroki Noborio, T. Koide, A. Tamura\",\"doi\":\"10.1115/detc2019-97776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study proposes a stylization method for gear tooth surface using slices of 2-dimensional spectrum. Focusing on a contour (or a slice in the z direction) of the curved surface generated by the 2-dimensinal spectrum, we could approximate the contour to a closed curve, and obtain the ‘scale’ parameter and the ‘shape’ parameter such as a radius, an aspect ratio, etc. which form the closed curve. To determine the flexibility of the proposed method for stylizing the surface texture of gear, this paper shows the approximating the 2-dimensional spectrums which are obtained by frequency analysis of the surface textures of gears with different machining processes using closed curve. As a result of the template matching using astroid, it was found that the astroid can approximate the contour of the 2-dimensinal power spectrum of the gear tooth surface with five machining processes, hob, generation grinding, form grinding, hone and barrel.\",\"PeriodicalId\":159554,\"journal\":{\"name\":\"Volume 10: 2019 International Power Transmission and Gearing Conference\",\"volume\":\"53 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 10: 2019 International Power Transmission and Gearing Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2019-97776\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 10: 2019 International Power Transmission and Gearing Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97776","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stylization for Gear Tooth Surfaces With Different Machining Processes Using Graphic Analysis
This study proposes a stylization method for gear tooth surface using slices of 2-dimensional spectrum. Focusing on a contour (or a slice in the z direction) of the curved surface generated by the 2-dimensinal spectrum, we could approximate the contour to a closed curve, and obtain the ‘scale’ parameter and the ‘shape’ parameter such as a radius, an aspect ratio, etc. which form the closed curve. To determine the flexibility of the proposed method for stylizing the surface texture of gear, this paper shows the approximating the 2-dimensional spectrums which are obtained by frequency analysis of the surface textures of gears with different machining processes using closed curve. As a result of the template matching using astroid, it was found that the astroid can approximate the contour of the 2-dimensinal power spectrum of the gear tooth surface with five machining processes, hob, generation grinding, form grinding, hone and barrel.