讨论动态商业环境与大数据分析之间的关系

D. Staegemann, M. Volk, Christopher Daase, K. Turowski
{"title":"讨论动态商业环境与大数据分析之间的关系","authors":"D. Staegemann, M. Volk, Christopher Daase, K. Turowski","doi":"10.7250/csimq.2020-23.05","DOIUrl":null,"url":null,"abstract":"Big data attracts researchers and practitioners around the globe in their desire to effectively manage the data deluge resulting from the ongoing evolution of the information systems domain. Consequently, many decision makers attempt to harness the potentials arising with the use of those modern technologies in a multitude of application scenarios. As a result, big data has gained an important role for many businesses. However, as of today, the developed solutions are oftentimes perceived as completed products, without considering that the application in highly dynamic environments might benefit from a deviation of this approach. Relevant data sources as well as the questions that are supposed to be answered by their analysis may change rapidly and so do subsequently the requirements regarding the functionalities of the system. To our knowledge, while big data itself is a prominent topic, fields of application that are likely to evolve in a short period of time and the resulting consequences were not specifically investigated until now. Therefore, this research aims to overcome this paucity by clarifying the relation between dynamic business environments and big data analytics (BDA), sensitizing researchers and practitioners for future big data engineering activities. Apart from a thorough literature review, expert interviews are conducted that evaluate the made inferences regarding dynamic and stable influencing factors, the influence of dynamic environments on BDA applications as well as possible countermeasures. The ascertained insights are condensed into a proposal for decision making, facilitating the alignment of BDA and business needs in dynamic business environments.","PeriodicalId":416219,"journal":{"name":"Complex Syst. Informatics Model. Q.","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Discussing Relations Between Dynamic Business Environments and Big Data Analytics\",\"authors\":\"D. Staegemann, M. Volk, Christopher Daase, K. Turowski\",\"doi\":\"10.7250/csimq.2020-23.05\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Big data attracts researchers and practitioners around the globe in their desire to effectively manage the data deluge resulting from the ongoing evolution of the information systems domain. Consequently, many decision makers attempt to harness the potentials arising with the use of those modern technologies in a multitude of application scenarios. As a result, big data has gained an important role for many businesses. However, as of today, the developed solutions are oftentimes perceived as completed products, without considering that the application in highly dynamic environments might benefit from a deviation of this approach. Relevant data sources as well as the questions that are supposed to be answered by their analysis may change rapidly and so do subsequently the requirements regarding the functionalities of the system. To our knowledge, while big data itself is a prominent topic, fields of application that are likely to evolve in a short period of time and the resulting consequences were not specifically investigated until now. Therefore, this research aims to overcome this paucity by clarifying the relation between dynamic business environments and big data analytics (BDA), sensitizing researchers and practitioners for future big data engineering activities. Apart from a thorough literature review, expert interviews are conducted that evaluate the made inferences regarding dynamic and stable influencing factors, the influence of dynamic environments on BDA applications as well as possible countermeasures. The ascertained insights are condensed into a proposal for decision making, facilitating the alignment of BDA and business needs in dynamic business environments.\",\"PeriodicalId\":416219,\"journal\":{\"name\":\"Complex Syst. Informatics Model. Q.\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Syst. Informatics Model. Q.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.7250/csimq.2020-23.05\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Syst. Informatics Model. Q.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7250/csimq.2020-23.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

大数据吸引了全球各地的研究人员和从业者,他们希望有效地管理信息系统领域不断发展的数据洪流。因此,许多决策者试图利用在众多应用场景中使用这些现代技术所产生的潜力。因此,大数据在许多企业中发挥了重要作用。然而,到目前为止,开发的解决方案通常被认为是完成的产品,而没有考虑到高度动态环境中的应用程序可能会从这种方法的偏差中受益。相关的数据源以及应该通过它们的分析来回答的问题可能会迅速变化,随后关于系统功能的需求也会迅速变化。据我们所知,虽然大数据本身是一个突出的话题,但到目前为止,尚未对可能在短时间内发展的应用领域及其后果进行专门研究。因此,本研究旨在通过澄清动态商业环境与大数据分析(BDA)之间的关系,使研究人员和从业者对未来的大数据工程活动更加敏感,从而克服这一不足。除了全面的文献综述外,我们还进行了专家访谈,以评估动态和稳定的影响因素,动态环境对BDA应用的影响以及可能的对策。确定的见解被浓缩为决策建议,促进BDA和动态业务环境中的业务需求的一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Discussing Relations Between Dynamic Business Environments and Big Data Analytics
Big data attracts researchers and practitioners around the globe in their desire to effectively manage the data deluge resulting from the ongoing evolution of the information systems domain. Consequently, many decision makers attempt to harness the potentials arising with the use of those modern technologies in a multitude of application scenarios. As a result, big data has gained an important role for many businesses. However, as of today, the developed solutions are oftentimes perceived as completed products, without considering that the application in highly dynamic environments might benefit from a deviation of this approach. Relevant data sources as well as the questions that are supposed to be answered by their analysis may change rapidly and so do subsequently the requirements regarding the functionalities of the system. To our knowledge, while big data itself is a prominent topic, fields of application that are likely to evolve in a short period of time and the resulting consequences were not specifically investigated until now. Therefore, this research aims to overcome this paucity by clarifying the relation between dynamic business environments and big data analytics (BDA), sensitizing researchers and practitioners for future big data engineering activities. Apart from a thorough literature review, expert interviews are conducted that evaluate the made inferences regarding dynamic and stable influencing factors, the influence of dynamic environments on BDA applications as well as possible countermeasures. The ascertained insights are condensed into a proposal for decision making, facilitating the alignment of BDA and business needs in dynamic business environments.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discovering and Assessing Enterprise Architecture Debts Towards an E-Government Enterprise Architecture Framework for Developing Economies Trustworthiness Requirements in Information Systems Design: Lessons Learned from the Blockchain Community Business-IT Alignment: A Discussion on Enterprise Architecture and Blockchains. Editorial Introduction to Issue 35 of CSIMQ Supporting Information System Integration Decisions in the Post-Merger Context
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1