{"title":"使用高级运动原语的自主机器人导航","authors":"M. Pivtoraiko, I. Nesnas, A. Kelly","doi":"10.1109/AERO.2009.4839309","DOIUrl":null,"url":null,"abstract":"We present an approach to efficient navigation of autonomous wheeled robots operating in cluttered natural environments. The approach builds upon a popular method of autonomous robot navigation, where desired robot motions are computed using local and global motion planners operating in tandem. A conventional approach to designing the local planner in this setting is to evaluate a fixed number of constant-curvature arc motions and pick one that is the best balance between the quality of obstacle avoidance and minimizing traversed path length to the goal (or a similar measure of operation cost). The presented approach proposes a different set of motion alternatives considered by the local planner. Important performance improvement is achieved by relaxing the assumption that motion alternatives are constant-curvature arcs. We first present a method to measure the quality of local planners in this setting. Further, we identify general techniques of designing improved sets of motion alternatives. By virtue of a minor modification, solely replacing the motions considered by the local planner, our approach offers a measurable performance improvement of dual-planner navigation systems.","PeriodicalId":117250,"journal":{"name":"2009 IEEE Aerospace conference","volume":"100 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Autonomous robot navigation using advanced motion primitives\",\"authors\":\"M. Pivtoraiko, I. Nesnas, A. Kelly\",\"doi\":\"10.1109/AERO.2009.4839309\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an approach to efficient navigation of autonomous wheeled robots operating in cluttered natural environments. The approach builds upon a popular method of autonomous robot navigation, where desired robot motions are computed using local and global motion planners operating in tandem. A conventional approach to designing the local planner in this setting is to evaluate a fixed number of constant-curvature arc motions and pick one that is the best balance between the quality of obstacle avoidance and minimizing traversed path length to the goal (or a similar measure of operation cost). The presented approach proposes a different set of motion alternatives considered by the local planner. Important performance improvement is achieved by relaxing the assumption that motion alternatives are constant-curvature arcs. We first present a method to measure the quality of local planners in this setting. Further, we identify general techniques of designing improved sets of motion alternatives. By virtue of a minor modification, solely replacing the motions considered by the local planner, our approach offers a measurable performance improvement of dual-planner navigation systems.\",\"PeriodicalId\":117250,\"journal\":{\"name\":\"2009 IEEE Aerospace conference\",\"volume\":\"100 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Aerospace conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO.2009.4839309\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Aerospace conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2009.4839309","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Autonomous robot navigation using advanced motion primitives
We present an approach to efficient navigation of autonomous wheeled robots operating in cluttered natural environments. The approach builds upon a popular method of autonomous robot navigation, where desired robot motions are computed using local and global motion planners operating in tandem. A conventional approach to designing the local planner in this setting is to evaluate a fixed number of constant-curvature arc motions and pick one that is the best balance between the quality of obstacle avoidance and minimizing traversed path length to the goal (or a similar measure of operation cost). The presented approach proposes a different set of motion alternatives considered by the local planner. Important performance improvement is achieved by relaxing the assumption that motion alternatives are constant-curvature arcs. We first present a method to measure the quality of local planners in this setting. Further, we identify general techniques of designing improved sets of motion alternatives. By virtue of a minor modification, solely replacing the motions considered by the local planner, our approach offers a measurable performance improvement of dual-planner navigation systems.