基于BP神经网络和改进SEP的异构网络数据融合

Yu Cao, Linghua Zhang
{"title":"基于BP神经网络和改进SEP的异构网络数据融合","authors":"Yu Cao, Linghua Zhang","doi":"10.1109/ICAIT.2017.8388903","DOIUrl":null,"url":null,"abstract":"This paper proposes a data fusion method for Heterogeneous Wireless Sensor Networks (WSN). On the basis of the classic heterogeneous network clustering algorithm Stable Election Protocol(SEP), the intermediate nodes are added to optimize the information transfer within the cluster, and the Back Propagation(BP) neural network is used to fuse the data received from the cluster head into the cluster. The simulation results show that the method can greatly improve the energy consumption of nodes and the lifetime of wireless sensor networks.","PeriodicalId":376884,"journal":{"name":"2017 9th International Conference on Advanced Infocomm Technology (ICAIT)","volume":"285 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Data fusion of heterogeneous network based on BP neural network and improved SEP\",\"authors\":\"Yu Cao, Linghua Zhang\",\"doi\":\"10.1109/ICAIT.2017.8388903\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a data fusion method for Heterogeneous Wireless Sensor Networks (WSN). On the basis of the classic heterogeneous network clustering algorithm Stable Election Protocol(SEP), the intermediate nodes are added to optimize the information transfer within the cluster, and the Back Propagation(BP) neural network is used to fuse the data received from the cluster head into the cluster. The simulation results show that the method can greatly improve the energy consumption of nodes and the lifetime of wireless sensor networks.\",\"PeriodicalId\":376884,\"journal\":{\"name\":\"2017 9th International Conference on Advanced Infocomm Technology (ICAIT)\",\"volume\":\"285 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 9th International Conference on Advanced Infocomm Technology (ICAIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIT.2017.8388903\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 9th International Conference on Advanced Infocomm Technology (ICAIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIT.2017.8388903","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种异构无线传感器网络(WSN)的数据融合方法。在经典的异构网络聚类算法稳定选举协议(SEP)的基础上,增加中间节点优化簇内信息传递,并利用BP神经网络将簇头接收到的数据融合到簇内。仿真结果表明,该方法可以大大提高节点的能量消耗和无线传感器网络的寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Data fusion of heterogeneous network based on BP neural network and improved SEP
This paper proposes a data fusion method for Heterogeneous Wireless Sensor Networks (WSN). On the basis of the classic heterogeneous network clustering algorithm Stable Election Protocol(SEP), the intermediate nodes are added to optimize the information transfer within the cluster, and the Back Propagation(BP) neural network is used to fuse the data received from the cluster head into the cluster. The simulation results show that the method can greatly improve the energy consumption of nodes and the lifetime of wireless sensor networks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data fusion of heterogeneous network based on BP neural network and improved SEP Generation of PAM4 signal over 10-km multi core fiber using DMLs and photodiode Backstepping adaptive sliding mode control for the USV course tracking system Color demosaicking with the spatial alignment property of spectral Laplacians The principle and application of hyperspectral imaging technology in detection of handwriting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1