用于以通信为中心的嵌入式多处理器soc调试的片上网络监控基础设施

B. Vermeulen, K. Goossens
{"title":"用于以通信为中心的嵌入式多处理器soc调试的片上网络监控基础设施","authors":"B. Vermeulen, K. Goossens","doi":"10.1109/VDAT.2009.5158125","DOIUrl":null,"url":null,"abstract":"Problems in a new System on Chip (SOC) consisting of hardware and embedded software often only show up when a silicon prototype of the chip is placed in its intended target environment and the application is executed. Traditionally, the debugging of embedded systems is difficult and time consuming because of the intrinsic lack of internal system observability and controlability in the target environment. Design for Debug (DfD) is the act of adding debug support to the design of a chip, in the realization that not every SOC is correct first time. DfD provides debug engineers with increased observability and controlability of the internal operation of an embedded system. In this paper, we present a monitoring infrastructure for multi-processor SOCs with a Network on Chip (NOC), and explain its application to performance analysis and debug. We describe how our monitors aid in the performance analysis and debug of the interactions of the embedded processors. We present a generic template for bus and router monitors, and show how they are instantiated at design time in our NOC design flow. We conclude this paper with details of their hardware cost.","PeriodicalId":246670,"journal":{"name":"2009 International Symposium on VLSI Design, Automation and Test","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-04-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"52","resultStr":"{\"title\":\"A Network-on-Chip monitoring infrastructure for communication-centric debug of embedded multi-processor SoCs\",\"authors\":\"B. Vermeulen, K. Goossens\",\"doi\":\"10.1109/VDAT.2009.5158125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Problems in a new System on Chip (SOC) consisting of hardware and embedded software often only show up when a silicon prototype of the chip is placed in its intended target environment and the application is executed. Traditionally, the debugging of embedded systems is difficult and time consuming because of the intrinsic lack of internal system observability and controlability in the target environment. Design for Debug (DfD) is the act of adding debug support to the design of a chip, in the realization that not every SOC is correct first time. DfD provides debug engineers with increased observability and controlability of the internal operation of an embedded system. In this paper, we present a monitoring infrastructure for multi-processor SOCs with a Network on Chip (NOC), and explain its application to performance analysis and debug. We describe how our monitors aid in the performance analysis and debug of the interactions of the embedded processors. We present a generic template for bus and router monitors, and show how they are instantiated at design time in our NOC design flow. We conclude this paper with details of their hardware cost.\",\"PeriodicalId\":246670,\"journal\":{\"name\":\"2009 International Symposium on VLSI Design, Automation and Test\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-04-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"52\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Symposium on VLSI Design, Automation and Test\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VDAT.2009.5158125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on VLSI Design, Automation and Test","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VDAT.2009.5158125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 52

摘要

由硬件和嵌入式软件组成的新型片上系统(SOC)中的问题通常只有在将芯片的硅原型放置在预期的目标环境中并执行应用程序时才会出现。传统的嵌入式系统由于缺乏内部系统在目标环境中的可观察性和可控性,调试困难且耗时。调试设计(DfD)是在芯片设计中增加调试支持的行为,意识到并非每个SOC都是第一次正确的。DfD为调试工程师提供了嵌入式系统内部操作的可观察性和可控性。本文提出了一种基于片上网络(NOC)的多处理器soc监控架构,并解释了其在性能分析和调试中的应用。我们描述了我们的监视器如何帮助进行嵌入式处理器交互的性能分析和调试。我们为总线和路由器监视器提供了一个通用模板,并展示了它们是如何在设计时在我们的NOC设计流程中实例化的。最后我们详细介绍了它们的硬件成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Network-on-Chip monitoring infrastructure for communication-centric debug of embedded multi-processor SoCs
Problems in a new System on Chip (SOC) consisting of hardware and embedded software often only show up when a silicon prototype of the chip is placed in its intended target environment and the application is executed. Traditionally, the debugging of embedded systems is difficult and time consuming because of the intrinsic lack of internal system observability and controlability in the target environment. Design for Debug (DfD) is the act of adding debug support to the design of a chip, in the realization that not every SOC is correct first time. DfD provides debug engineers with increased observability and controlability of the internal operation of an embedded system. In this paper, we present a monitoring infrastructure for multi-processor SOCs with a Network on Chip (NOC), and explain its application to performance analysis and debug. We describe how our monitors aid in the performance analysis and debug of the interactions of the embedded processors. We present a generic template for bus and router monitors, and show how they are instantiated at design time in our NOC design flow. We conclude this paper with details of their hardware cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fault-tolerant router with built-in self-test/self-diagnosis and fault-isolation circuits for 2D-mesh based chip multiprocessor systems An area efficient shared synapse cellular neural network for low power image processing A Network-on-Chip monitoring infrastructure for communication-centric debug of embedded multi-processor SoCs A gm/ID-based synthesis tool for pipelined analog to digital converters Microscopic wireless - Exploring the boundaries of ultra low-power design
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1