W. Bijker, N. Hamm, Julian Ijumulana, Misganaw Kebede Wole
{"title":"监测一个模糊的对象:奈瓦沙湖的案例","authors":"W. Bijker, N. Hamm, Julian Ijumulana, Misganaw Kebede Wole","doi":"10.1109/MULTI-TEMP.2011.6005071","DOIUrl":null,"url":null,"abstract":"This study shows two approaches to including uncertainty of the mapped feature in multi-temporal analysis. This is demonstrated on a series of Landsat ETM+ images of Lake Naivasha, Kenya, with fuzzy boundaries resulting from marshes and floating vegetation. The first approach creates image segments, merges these to image objects through object-based classification and calculates the uncertainty for the lake image object in each image. The second approach uses a soft classifier to calculate memberships for lake and land. The lake area is calculated for 6 different thresholds on membership for each “lake” membership image, reflecting thresholds on the uncertainty in the estimate. The method based on image objects and attached uncertainty provided a quick overview and highlights uncertainty related to image quality and time of observation. The method based on thresholding of membership gave more spatial detail, highlighting the effect of fuzzy boundaries.","PeriodicalId":254778,"journal":{"name":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Monitoring a fuzzy object: The case of Lake Naivasha\",\"authors\":\"W. Bijker, N. Hamm, Julian Ijumulana, Misganaw Kebede Wole\",\"doi\":\"10.1109/MULTI-TEMP.2011.6005071\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study shows two approaches to including uncertainty of the mapped feature in multi-temporal analysis. This is demonstrated on a series of Landsat ETM+ images of Lake Naivasha, Kenya, with fuzzy boundaries resulting from marshes and floating vegetation. The first approach creates image segments, merges these to image objects through object-based classification and calculates the uncertainty for the lake image object in each image. The second approach uses a soft classifier to calculate memberships for lake and land. The lake area is calculated for 6 different thresholds on membership for each “lake” membership image, reflecting thresholds on the uncertainty in the estimate. The method based on image objects and attached uncertainty provided a quick overview and highlights uncertainty related to image quality and time of observation. The method based on thresholding of membership gave more spatial detail, highlighting the effect of fuzzy boundaries.\",\"PeriodicalId\":254778,\"journal\":{\"name\":\"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MULTI-TEMP.2011.6005071\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 6th International Workshop on the Analysis of Multi-temporal Remote Sensing Images (Multi-Temp)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MULTI-TEMP.2011.6005071","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Monitoring a fuzzy object: The case of Lake Naivasha
This study shows two approaches to including uncertainty of the mapped feature in multi-temporal analysis. This is demonstrated on a series of Landsat ETM+ images of Lake Naivasha, Kenya, with fuzzy boundaries resulting from marshes and floating vegetation. The first approach creates image segments, merges these to image objects through object-based classification and calculates the uncertainty for the lake image object in each image. The second approach uses a soft classifier to calculate memberships for lake and land. The lake area is calculated for 6 different thresholds on membership for each “lake” membership image, reflecting thresholds on the uncertainty in the estimate. The method based on image objects and attached uncertainty provided a quick overview and highlights uncertainty related to image quality and time of observation. The method based on thresholding of membership gave more spatial detail, highlighting the effect of fuzzy boundaries.