{"title":"神经网络规则提取的比较研究","authors":"Gethsiyal Augasta M, T. Kathirvalavakumar","doi":"10.1109/ICPRIME.2012.6208380","DOIUrl":null,"url":null,"abstract":"Though neural networks have achieved highest classification accuracy for many classification problems, the obtained results may not be interpretable as they are often considered as black box. To overcome this drawback researchers have developed many rule extraction algorithms. This paper has discussed on various rule extraction algorithms based on three different rule extraction approaches namely decompositional, pedagogical and eclectic. Also it evaluates the performance of those approaches by comparing different algorithms with these three approaches on three real datasets namely Wisconsin breast cancer, Pima Indian diabetes and Iris plants.","PeriodicalId":148511,"journal":{"name":"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Rule extraction from neural networks — A comparative study\",\"authors\":\"Gethsiyal Augasta M, T. Kathirvalavakumar\",\"doi\":\"10.1109/ICPRIME.2012.6208380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Though neural networks have achieved highest classification accuracy for many classification problems, the obtained results may not be interpretable as they are often considered as black box. To overcome this drawback researchers have developed many rule extraction algorithms. This paper has discussed on various rule extraction algorithms based on three different rule extraction approaches namely decompositional, pedagogical and eclectic. Also it evaluates the performance of those approaches by comparing different algorithms with these three approaches on three real datasets namely Wisconsin breast cancer, Pima Indian diabetes and Iris plants.\",\"PeriodicalId\":148511,\"journal\":{\"name\":\"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPRIME.2012.6208380\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Pattern Recognition, Informatics and Medical Engineering (PRIME-2012)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPRIME.2012.6208380","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Rule extraction from neural networks — A comparative study
Though neural networks have achieved highest classification accuracy for many classification problems, the obtained results may not be interpretable as they are often considered as black box. To overcome this drawback researchers have developed many rule extraction algorithms. This paper has discussed on various rule extraction algorithms based on three different rule extraction approaches namely decompositional, pedagogical and eclectic. Also it evaluates the performance of those approaches by comparing different algorithms with these three approaches on three real datasets namely Wisconsin breast cancer, Pima Indian diabetes and Iris plants.