使用神经网络进行自动说话人识别:一种实用的方法

Ryan Pinto, H.L.C.P. Pinto, L. Calôba
{"title":"使用神经网络进行自动说话人识别:一种实用的方法","authors":"Ryan Pinto, H.L.C.P. Pinto, L. Calôba","doi":"10.1109/MWSCAS.1995.510281","DOIUrl":null,"url":null,"abstract":"This paper describes an automatic speaker recognition method for telephone speech, using acoustic processing of a single trisyllabic Portuguese word. Cepstrum coefficients are extracted from the linear predictive coefficients and no further processing is needed. In this method, the traditional classification method (non-Euclidean distance measurement) was efficiently substituted by a multi-layer neural network with encouraging results.","PeriodicalId":165081,"journal":{"name":"38th Midwest Symposium on Circuits and Systems. Proceedings","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Using neural networks for automatic speaker recognition: a practical approach\",\"authors\":\"Ryan Pinto, H.L.C.P. Pinto, L. Calôba\",\"doi\":\"10.1109/MWSCAS.1995.510281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes an automatic speaker recognition method for telephone speech, using acoustic processing of a single trisyllabic Portuguese word. Cepstrum coefficients are extracted from the linear predictive coefficients and no further processing is needed. In this method, the traditional classification method (non-Euclidean distance measurement) was efficiently substituted by a multi-layer neural network with encouraging results.\",\"PeriodicalId\":165081,\"journal\":{\"name\":\"38th Midwest Symposium on Circuits and Systems. Proceedings\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1995-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"38th Midwest Symposium on Circuits and Systems. Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS.1995.510281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"38th Midwest Symposium on Circuits and Systems. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS.1995.510281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文介绍了一种基于三音节葡萄牙语单词声学处理的电话语音自动识别方法。从线性预测系数中提取倒谱系数,无需进一步处理。该方法有效地用多层神经网络代替了传统的非欧几里得距离测量分类方法,取得了令人满意的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Using neural networks for automatic speaker recognition: a practical approach
This paper describes an automatic speaker recognition method for telephone speech, using acoustic processing of a single trisyllabic Portuguese word. Cepstrum coefficients are extracted from the linear predictive coefficients and no further processing is needed. In this method, the traditional classification method (non-Euclidean distance measurement) was efficiently substituted by a multi-layer neural network with encouraging results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A band-pass sigma-delta modulator architecture for digital radio Forecasting epidemiological time series with backpropagation neural networks Analog blocks for high-speed oversampled A/D converters Designing efficient redundant arithmetic processors for DSP applications Using neural networks for automatic speaker recognition: a practical approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1