基于稳定动态模型反演的非最小相位系统独立分量分析

Shuichi Fukunaga, Kenji Fujimoto
{"title":"基于稳定动态模型反演的非最小相位系统独立分量分析","authors":"Shuichi Fukunaga, Kenji Fujimoto","doi":"10.23919/ECC.2007.7068597","DOIUrl":null,"url":null,"abstract":"This paper proposes an independent component analysis method using stable dynamic model inversion for nonminimum phase systems. First, a stable inverse filter is constructed based on a Kalman filter in order to estimate the input sequence of the given plant. Second, the learning algorithm is derived by minimizing the Kullback-Leibler divergence. Furthermore, a numerical simulation demonstrates the effectiveness of the proposed method.","PeriodicalId":407048,"journal":{"name":"2007 European Control Conference (ECC)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Independent component analysis for nonminimum phase systems using stable dynamic model inversion\",\"authors\":\"Shuichi Fukunaga, Kenji Fujimoto\",\"doi\":\"10.23919/ECC.2007.7068597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an independent component analysis method using stable dynamic model inversion for nonminimum phase systems. First, a stable inverse filter is constructed based on a Kalman filter in order to estimate the input sequence of the given plant. Second, the learning algorithm is derived by minimizing the Kullback-Leibler divergence. Furthermore, a numerical simulation demonstrates the effectiveness of the proposed method.\",\"PeriodicalId\":407048,\"journal\":{\"name\":\"2007 European Control Conference (ECC)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 European Control Conference (ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ECC.2007.7068597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.2007.7068597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对非最小相位系统,提出了一种基于稳定动态模型反演的独立分量分析方法。首先,基于卡尔曼滤波器构造了一个稳定的逆滤波器,以估计给定对象的输入序列。其次,通过最小化Kullback-Leibler散度推导出学习算法。最后,通过数值仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Independent component analysis for nonminimum phase systems using stable dynamic model inversion
This paper proposes an independent component analysis method using stable dynamic model inversion for nonminimum phase systems. First, a stable inverse filter is constructed based on a Kalman filter in order to estimate the input sequence of the given plant. Second, the learning algorithm is derived by minimizing the Kullback-Leibler divergence. Furthermore, a numerical simulation demonstrates the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Maximum Likelihood estimation of state space models from frequency domain data Output feedback H∞ control of continuous-time infinite Markovian jump linear systems via LMI methods Visual servoing of a parallel robot system Comparison between SOS approach and Slack Variable approach for non-negativity check of polynomial functions: Multiple variable case Integrating Hamiltonian systems defined on the Lie groups SO(4) and SO(1,3)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1