Stefan Dziwok, Christopher Gerking, Steffen Becker, Sebastian Thiele, Christian Heinzemann, Uwe Pohlmann
{"title":"一套用于网络物理系统模型驱动软件工程的工具","authors":"Stefan Dziwok, Christopher Gerking, Steffen Becker, Sebastian Thiele, Christian Heinzemann, Uwe Pohlmann","doi":"10.1145/2635868.2661665","DOIUrl":null,"url":null,"abstract":"Cyber-physical systems, e.g., autonomous cars or trains, interact with their physical environment. As a consequence, they commonly have to coordinate with other systems via complex message communication while realizing safety-critical and real-time tasks. As a result, those systems should be correct by construction. Software architects can achieve this by using the MechatronicUML process and language. This paper presents the MechatronicUML Tool Suite that offers unique features to support the MechatronicUML modeling and analyses tasks.","PeriodicalId":250543,"journal":{"name":"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A tool suite for the model-driven software engineering of cyber-physical systems\",\"authors\":\"Stefan Dziwok, Christopher Gerking, Steffen Becker, Sebastian Thiele, Christian Heinzemann, Uwe Pohlmann\",\"doi\":\"10.1145/2635868.2661665\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyber-physical systems, e.g., autonomous cars or trains, interact with their physical environment. As a consequence, they commonly have to coordinate with other systems via complex message communication while realizing safety-critical and real-time tasks. As a result, those systems should be correct by construction. Software architects can achieve this by using the MechatronicUML process and language. This paper presents the MechatronicUML Tool Suite that offers unique features to support the MechatronicUML modeling and analyses tasks.\",\"PeriodicalId\":250543,\"journal\":{\"name\":\"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2635868.2661665\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 22nd ACM SIGSOFT International Symposium on Foundations of Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2635868.2661665","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A tool suite for the model-driven software engineering of cyber-physical systems
Cyber-physical systems, e.g., autonomous cars or trains, interact with their physical environment. As a consequence, they commonly have to coordinate with other systems via complex message communication while realizing safety-critical and real-time tasks. As a result, those systems should be correct by construction. Software architects can achieve this by using the MechatronicUML process and language. This paper presents the MechatronicUML Tool Suite that offers unique features to support the MechatronicUML modeling and analyses tasks.