利用开发的微磨料射流装置对玻璃微孔进行多准则优化

V. V. Vanmore, U. Dabade
{"title":"利用开发的微磨料射流装置对玻璃微孔进行多准则优化","authors":"V. V. Vanmore, U. Dabade","doi":"10.1177/25165984221135047","DOIUrl":null,"url":null,"abstract":"In non-traditional machining, micro-abrasive jet machining (MAJM) is a cost-effective machining process. MAJM has been used for fabricating electronic devices and microfluidic channels. This work has made an effort to utilize MAJM for glass. A new design and fabrication of the Laval type of nozzle have been proposed to improve machining accuracy. A nozzle is conceived to ensure specific characteristics of the mixture (compressed air and abrasive particles) pass through it. The abrasive particle force is converted to kinetic energy, increasing the mixture’s velocity. The cross-sectional area of the nozzle can be circular, rectangular, square, or oval. A circular cross-sectional nozzle has been developed for high velocity, precise etching, and patterning on difficult-to-machine materials such as steel alloys. A circular cross-sectional micro-nozzle with a large aspect ratio is proposed, and the flow characteristics and cutting performance are examined precisely by the experiment. Efforts are being made to make machining processes sustainable, productive, and efficient. Here, the Taguchi-grey relational analysis integration approach has been used to analyze the machining parameters such as air pressure, stand-off distance, and abrasive mesh size (AMS). The top hole diameter, bottom hole diameter, material removal rate, and radial overcut are the response variables in this investigation. Analysis of variance (ANOVA) results showed that the AMS was the most efficient parameter, which followed the processing condition on the total input of the multi-purpose function. The reported optimized process parameters are air pressure of 8 bar, stand-off distance of 2 mm, and AMS mix (50%+100%) micron, which significantly affects the top and bottom micro-hole diameters.","PeriodicalId":129806,"journal":{"name":"Journal of Micromanufacturing","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-criteria optimization of micro-hole on glass using developed µ-abrasive jet machine set-up\",\"authors\":\"V. V. Vanmore, U. Dabade\",\"doi\":\"10.1177/25165984221135047\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In non-traditional machining, micro-abrasive jet machining (MAJM) is a cost-effective machining process. MAJM has been used for fabricating electronic devices and microfluidic channels. This work has made an effort to utilize MAJM for glass. A new design and fabrication of the Laval type of nozzle have been proposed to improve machining accuracy. A nozzle is conceived to ensure specific characteristics of the mixture (compressed air and abrasive particles) pass through it. The abrasive particle force is converted to kinetic energy, increasing the mixture’s velocity. The cross-sectional area of the nozzle can be circular, rectangular, square, or oval. A circular cross-sectional nozzle has been developed for high velocity, precise etching, and patterning on difficult-to-machine materials such as steel alloys. A circular cross-sectional micro-nozzle with a large aspect ratio is proposed, and the flow characteristics and cutting performance are examined precisely by the experiment. Efforts are being made to make machining processes sustainable, productive, and efficient. Here, the Taguchi-grey relational analysis integration approach has been used to analyze the machining parameters such as air pressure, stand-off distance, and abrasive mesh size (AMS). The top hole diameter, bottom hole diameter, material removal rate, and radial overcut are the response variables in this investigation. Analysis of variance (ANOVA) results showed that the AMS was the most efficient parameter, which followed the processing condition on the total input of the multi-purpose function. The reported optimized process parameters are air pressure of 8 bar, stand-off distance of 2 mm, and AMS mix (50%+100%) micron, which significantly affects the top and bottom micro-hole diameters.\",\"PeriodicalId\":129806,\"journal\":{\"name\":\"Journal of Micromanufacturing\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Micromanufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1177/25165984221135047\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Micromanufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/25165984221135047","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在非传统加工中,微磨料射流加工(MAJM)是一种经济高效的加工工艺。MAJM已被用于制造电子器件和微流体通道。这项工作为利用MAJM制造玻璃做出了努力。为了提高加工精度,提出了一种新的拉瓦尔型喷嘴的设计和制造方法。喷嘴的设计是为了确保混合物的特定特性(压缩空气和磨料颗粒)通过它。磨料颗粒的力转化为动能,增加了混合物的速度。喷嘴的横截面积可以是圆形、矩形、方形或椭圆形。一种用于高速、精确刻蚀和在难以加工的材料(如钢合金)上刻蚀的圆形截面喷嘴已经被开发出来。提出了一种大展弦比圆形截面微喷嘴,并通过实验对其流动特性和切削性能进行了精确检验。人们正在努力使机械加工过程可持续、高产和高效。在这里,田口灰关联分析集成方法已被用于分析加工参数,如空气压力,隔离距离,磨料孔径(AMS)。顶孔直径、底孔直径、材料去除率和径向过切量是本研究的响应变量。方差分析(ANOVA)结果表明,AMS是最有效的参数,它遵循了多用途函数总输入的处理条件。优化后的工艺参数为:气压为8 bar,隔离距离为2 mm, AMS掺量(50%+100%)微米,对顶、底微孔直径影响显著。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multi-criteria optimization of micro-hole on glass using developed µ-abrasive jet machine set-up
In non-traditional machining, micro-abrasive jet machining (MAJM) is a cost-effective machining process. MAJM has been used for fabricating electronic devices and microfluidic channels. This work has made an effort to utilize MAJM for glass. A new design and fabrication of the Laval type of nozzle have been proposed to improve machining accuracy. A nozzle is conceived to ensure specific characteristics of the mixture (compressed air and abrasive particles) pass through it. The abrasive particle force is converted to kinetic energy, increasing the mixture’s velocity. The cross-sectional area of the nozzle can be circular, rectangular, square, or oval. A circular cross-sectional nozzle has been developed for high velocity, precise etching, and patterning on difficult-to-machine materials such as steel alloys. A circular cross-sectional micro-nozzle with a large aspect ratio is proposed, and the flow characteristics and cutting performance are examined precisely by the experiment. Efforts are being made to make machining processes sustainable, productive, and efficient. Here, the Taguchi-grey relational analysis integration approach has been used to analyze the machining parameters such as air pressure, stand-off distance, and abrasive mesh size (AMS). The top hole diameter, bottom hole diameter, material removal rate, and radial overcut are the response variables in this investigation. Analysis of variance (ANOVA) results showed that the AMS was the most efficient parameter, which followed the processing condition on the total input of the multi-purpose function. The reported optimized process parameters are air pressure of 8 bar, stand-off distance of 2 mm, and AMS mix (50%+100%) micron, which significantly affects the top and bottom micro-hole diameters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Additive manufacturing in the COVID-19 pandemic: Equipment and challenges? Strain softening observed during nanoindentation of equimolar-ratio Co–Mn– Fe–Cr–Ni high entropy alloy Surface modification using nanostructures and nanocoating to combat the spread of bacteria and viruses: Recent development
and challenges A review on applications of molecular dynamics in additive manufacturing A review on applications of molecular dynamics in additive manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1