{"title":"一棵树就足够了:单汇批量购买的同时O(1)逼近","authors":"Ashish Goel, Ian Post","doi":"10.4086/toc.2012.v008a015","DOIUrl":null,"url":null,"abstract":"We study the single-sink buy-at-bulk problem with an unknown cost function. We wish to route flow from a set of demand nodes to a root node, where the cost of routing x total flow along an edge is proportional to f(x) for some concave, non-decreasing function f satisfying f(0)=0. We present a simple, fast, combinatorial algorithm that takes a set of demands and constructs a single tree T such that for all f the cost f(T) is a 47.45-approximation of the optimal cost for that f. This is within a factor of 2.33 of the best approximation ratio currently achievable when the tree can be optimized for a specific function. Trees achieving simultaneous O(1)-approximations for all concave functions were previously not known to exist regardless of computation time.","PeriodicalId":228365,"journal":{"name":"2010 IEEE 51st Annual Symposium on Foundations of Computer Science","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"One Tree Suffices: A Simultaneous O(1)-Approximation for Single-Sink Buy-at-Bulk\",\"authors\":\"Ashish Goel, Ian Post\",\"doi\":\"10.4086/toc.2012.v008a015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the single-sink buy-at-bulk problem with an unknown cost function. We wish to route flow from a set of demand nodes to a root node, where the cost of routing x total flow along an edge is proportional to f(x) for some concave, non-decreasing function f satisfying f(0)=0. We present a simple, fast, combinatorial algorithm that takes a set of demands and constructs a single tree T such that for all f the cost f(T) is a 47.45-approximation of the optimal cost for that f. This is within a factor of 2.33 of the best approximation ratio currently achievable when the tree can be optimized for a specific function. Trees achieving simultaneous O(1)-approximations for all concave functions were previously not known to exist regardless of computation time.\",\"PeriodicalId\":228365,\"journal\":{\"name\":\"2010 IEEE 51st Annual Symposium on Foundations of Computer Science\",\"volume\":\"26 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 IEEE 51st Annual Symposium on Foundations of Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4086/toc.2012.v008a015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE 51st Annual Symposium on Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4086/toc.2012.v008a015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
One Tree Suffices: A Simultaneous O(1)-Approximation for Single-Sink Buy-at-Bulk
We study the single-sink buy-at-bulk problem with an unknown cost function. We wish to route flow from a set of demand nodes to a root node, where the cost of routing x total flow along an edge is proportional to f(x) for some concave, non-decreasing function f satisfying f(0)=0. We present a simple, fast, combinatorial algorithm that takes a set of demands and constructs a single tree T such that for all f the cost f(T) is a 47.45-approximation of the optimal cost for that f. This is within a factor of 2.33 of the best approximation ratio currently achievable when the tree can be optimized for a specific function. Trees achieving simultaneous O(1)-approximations for all concave functions were previously not known to exist regardless of computation time.