配电网雷电闪络预测的Bagging集成分类器

P. Sarajcev
{"title":"配电网雷电闪络预测的Bagging集成分类器","authors":"P. Sarajcev","doi":"10.23919/SpliTech55088.2022.9854317","DOIUrl":null,"url":null,"abstract":"This paper introduces a bagging ensemble classifier, built from support vector machines (SVM), for predicting lightning flashovers on overhead distribution lines (OHL). Support vectors from the underlying SVM give rise to the so-called curve of limiting parameters (CLP), which features prominently in the statistical method of insulation coordination. Proposed machine learning-based approach enables a straightforward derivation of the line's CLP-from simulations or actual measurements data gathered by the lightning location systems-for its subsequent use in insulation coordination studies. It also facilitates computing the risk of insulation flashover. Both these aspects fully endorse statistical approach to the insulation coordination and flashover performance analysis of OHLs.","PeriodicalId":295373,"journal":{"name":"2022 7th International Conference on Smart and Sustainable Technologies (SpliTech)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bagging Ensemble Classifier for Predicting Lightning Flashovers on Distribution Lines\",\"authors\":\"P. Sarajcev\",\"doi\":\"10.23919/SpliTech55088.2022.9854317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a bagging ensemble classifier, built from support vector machines (SVM), for predicting lightning flashovers on overhead distribution lines (OHL). Support vectors from the underlying SVM give rise to the so-called curve of limiting parameters (CLP), which features prominently in the statistical method of insulation coordination. Proposed machine learning-based approach enables a straightforward derivation of the line's CLP-from simulations or actual measurements data gathered by the lightning location systems-for its subsequent use in insulation coordination studies. It also facilitates computing the risk of insulation flashover. Both these aspects fully endorse statistical approach to the insulation coordination and flashover performance analysis of OHLs.\",\"PeriodicalId\":295373,\"journal\":{\"name\":\"2022 7th International Conference on Smart and Sustainable Technologies (SpliTech)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 7th International Conference on Smart and Sustainable Technologies (SpliTech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/SpliTech55088.2022.9854317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 7th International Conference on Smart and Sustainable Technologies (SpliTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/SpliTech55088.2022.9854317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文介绍了一种基于支持向量机(SVM)的袋装集成分类器,用于预测架空配电线路雷电闪络。来自底层支持向量机的支持向量产生了所谓的极限参数曲线(CLP),这在绝缘协调的统计方法中具有突出的特点。提出的基于机器学习的方法可以从闪电定位系统收集的模拟或实际测量数据中直接推导出线路的clp,以便随后在绝缘协调研究中使用。它还有助于计算绝缘闪络的风险。这两个方面都充分支持了ohl绝缘协调和闪络性能分析的统计方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bagging Ensemble Classifier for Predicting Lightning Flashovers on Distribution Lines
This paper introduces a bagging ensemble classifier, built from support vector machines (SVM), for predicting lightning flashovers on overhead distribution lines (OHL). Support vectors from the underlying SVM give rise to the so-called curve of limiting parameters (CLP), which features prominently in the statistical method of insulation coordination. Proposed machine learning-based approach enables a straightforward derivation of the line's CLP-from simulations or actual measurements data gathered by the lightning location systems-for its subsequent use in insulation coordination studies. It also facilitates computing the risk of insulation flashover. Both these aspects fully endorse statistical approach to the insulation coordination and flashover performance analysis of OHLs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ZERO ENERGY BUILDINGS: At a Glance Towards real time monitoring of an aeronautical machining process using scalable technologies Predicting TV Viewership with Regression Models Towards Consumer-Oriented Demand Response Systems RFID Thermal Monitoring Sheet (R-TMS) for Skin Temperature Measurements during Superficial Microwave Hyperthermia Treatment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1