基于关系概念分析的文本本体学习

M. Hacene, A. Napoli, Petko Valtchev, Y. Toussaint, R. Bendaoud
{"title":"基于关系概念分析的文本本体学习","authors":"M. Hacene, A. Napoli, Petko Valtchev, Y. Toussaint, R. Bendaoud","doi":"10.1109/MCETECH.2008.29","DOIUrl":null,"url":null,"abstract":"We propose an approach for semi-automated construction of ontologies from text whose core component is a relational concept analysis (RCA) framework which extends formal concept analysis (FCA), a lattice-theory paradigm for discovering abstractions within objects x attributes tables, to the processing of several sorts of individuals described both by own properties and inter-individual links. As a pre-processing, text analysis is used to transform a document collection into a set of data tables, or contexts, and inter-context relations. RCA then turns these into a set of concept lattices with inter-related concepts. A core ontology is derived from the lattices in a semi-automated manner, by translating relevant lattice elements into ontological concepts and relations, i.e., either taxonomic or transversal ones. The ontology is further refined by abstracting new transversal relations from the initially identified ones using RCA. We discuss as well the results of an application of the method to astronomy texts.","PeriodicalId":299458,"journal":{"name":"2008 International MCETECH Conference on e-Technologies (mcetech 2008)","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Ontology Learning from Text Using Relational Concept Analysis\",\"authors\":\"M. Hacene, A. Napoli, Petko Valtchev, Y. Toussaint, R. Bendaoud\",\"doi\":\"10.1109/MCETECH.2008.29\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an approach for semi-automated construction of ontologies from text whose core component is a relational concept analysis (RCA) framework which extends formal concept analysis (FCA), a lattice-theory paradigm for discovering abstractions within objects x attributes tables, to the processing of several sorts of individuals described both by own properties and inter-individual links. As a pre-processing, text analysis is used to transform a document collection into a set of data tables, or contexts, and inter-context relations. RCA then turns these into a set of concept lattices with inter-related concepts. A core ontology is derived from the lattices in a semi-automated manner, by translating relevant lattice elements into ontological concepts and relations, i.e., either taxonomic or transversal ones. The ontology is further refined by abstracting new transversal relations from the initially identified ones using RCA. We discuss as well the results of an application of the method to astronomy texts.\",\"PeriodicalId\":299458,\"journal\":{\"name\":\"2008 International MCETECH Conference on e-Technologies (mcetech 2008)\",\"volume\":\"222 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 International MCETECH Conference on e-Technologies (mcetech 2008)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCETECH.2008.29\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International MCETECH Conference on e-Technologies (mcetech 2008)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCETECH.2008.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

我们提出了一种从文本中半自动构建本体的方法,其核心组件是关系概念分析(RCA)框架,该框架扩展了形式概念分析(FCA),这是一种用于发现对象x属性表中的抽象的格理论范式,用于处理由自身属性和个体间链接描述的几种个体。作为预处理,文本分析用于将文档集合转换为一组数据表或上下文以及上下文间关系。然后,RCA将这些转化为一组概念格,其中包含相互关联的概念。通过将相关的格元素转换为本体论概念和关系,即分类学或横向的概念和关系,以半自动化的方式从格中派生出核心本体。通过使用RCA从最初识别的关系中抽象出新的横向关系,进一步改进了本体。我们还讨论了将该方法应用于天文学文本的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ontology Learning from Text Using Relational Concept Analysis
We propose an approach for semi-automated construction of ontologies from text whose core component is a relational concept analysis (RCA) framework which extends formal concept analysis (FCA), a lattice-theory paradigm for discovering abstractions within objects x attributes tables, to the processing of several sorts of individuals described both by own properties and inter-individual links. As a pre-processing, text analysis is used to transform a document collection into a set of data tables, or contexts, and inter-context relations. RCA then turns these into a set of concept lattices with inter-related concepts. A core ontology is derived from the lattices in a semi-automated manner, by translating relevant lattice elements into ontological concepts and relations, i.e., either taxonomic or transversal ones. The ontology is further refined by abstracting new transversal relations from the initially identified ones using RCA. We discuss as well the results of an application of the method to astronomy texts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ontology Learning from Text Using Relational Concept Analysis Learning to Trust the Crowd: Some Lessons from Wikipedia NetSim: a Simulation and Visualization Software for Information Network Modeling Human Workflows via Document-Driven Process Choreography Trust and Autonomic Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1