使用决策树分析的云数据中心错误配置检测

Tetsuya Uchiumi, S. Kikuchi, Y. Matsumoto
{"title":"使用决策树分析的云数据中心错误配置检测","authors":"Tetsuya Uchiumi, S. Kikuchi, Y. Matsumoto","doi":"10.1109/APNOMS.2012.6356072","DOIUrl":null,"url":null,"abstract":"Since many components comprising large scale cloud datacenters have a great number of configuration parameters (e.g. hostnames, languages, and time zones), it is difficult to keep consistencies in the configuration parameters. In such cases, misconfigured parameters can cause service failures. For this reason, we propose a misconfiguration detection method for large-scale cloud datacenters, which can automatically determine possible misconfigurations by identifying the relations existing among majority of the parameters using statistical decision tree analysis. We have also developed a pattern modification method to improve the accuracy of the decision tree approach. We evaluated the misconfiguration detection performance of the proposed method by using both artificial data and actual data. The results show that we can achieve higher accuracy (78.6% in the actual data) in misconfiguration detection by using the pattern modification.","PeriodicalId":385920,"journal":{"name":"2012 14th Asia-Pacific Network Operations and Management Symposium (APNOMS)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Misconfiguration detection for cloud datacenters using decision tree analysis\",\"authors\":\"Tetsuya Uchiumi, S. Kikuchi, Y. Matsumoto\",\"doi\":\"10.1109/APNOMS.2012.6356072\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since many components comprising large scale cloud datacenters have a great number of configuration parameters (e.g. hostnames, languages, and time zones), it is difficult to keep consistencies in the configuration parameters. In such cases, misconfigured parameters can cause service failures. For this reason, we propose a misconfiguration detection method for large-scale cloud datacenters, which can automatically determine possible misconfigurations by identifying the relations existing among majority of the parameters using statistical decision tree analysis. We have also developed a pattern modification method to improve the accuracy of the decision tree approach. We evaluated the misconfiguration detection performance of the proposed method by using both artificial data and actual data. The results show that we can achieve higher accuracy (78.6% in the actual data) in misconfiguration detection by using the pattern modification.\",\"PeriodicalId\":385920,\"journal\":{\"name\":\"2012 14th Asia-Pacific Network Operations and Management Symposium (APNOMS)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 14th Asia-Pacific Network Operations and Management Symposium (APNOMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APNOMS.2012.6356072\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 14th Asia-Pacific Network Operations and Management Symposium (APNOMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APNOMS.2012.6356072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

由于组成大规模云数据中心的许多组件都有大量的配置参数(例如主机名、语言和时区),因此很难保持配置参数的一致性。在这种情况下,配置错误的参数可能导致业务失败。为此,我们提出了一种大规模云数据中心的错误配置检测方法,该方法通过统计决策树分析来识别大多数参数之间存在的关系,从而自动确定可能的错误配置。我们还开发了一种模式修改方法来提高决策树方法的准确性。我们通过使用人工数据和实际数据来评估所提出方法的错误配置检测性能。结果表明,采用模式修正方法可以达到较高的误配置检测准确率(实际数据为78.6%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Misconfiguration detection for cloud datacenters using decision tree analysis
Since many components comprising large scale cloud datacenters have a great number of configuration parameters (e.g. hostnames, languages, and time zones), it is difficult to keep consistencies in the configuration parameters. In such cases, misconfigured parameters can cause service failures. For this reason, we propose a misconfiguration detection method for large-scale cloud datacenters, which can automatically determine possible misconfigurations by identifying the relations existing among majority of the parameters using statistical decision tree analysis. We have also developed a pattern modification method to improve the accuracy of the decision tree approach. We evaluated the misconfiguration detection performance of the proposed method by using both artificial data and actual data. The results show that we can achieve higher accuracy (78.6% in the actual data) in misconfiguration detection by using the pattern modification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Misconfiguration detection for cloud datacenters using decision tree analysis Design of the mitigation information network in urban area Flattening and preferential attachment in the internet evolution OPERAS': Generating and improving network operational workflows on-the-fly Data allocation method considering server performance and data access frequency with consistent hashing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1