多目标尺寸与形状优化的伴随变量法

Chen Jian Ken Lee, Wataru Furuya, Masato Tanaka, N. Takano
{"title":"多目标尺寸与形状优化的伴随变量法","authors":"Chen Jian Ken Lee, Wataru Furuya, Masato Tanaka, N. Takano","doi":"10.1299/JCST.3.275","DOIUrl":null,"url":null,"abstract":"With smooth objective functions and constraint conditions, gradient-based methods can be used to solve multi-objective optimization problems efficiently. However, when applied to structural sizing optimization problems, using the Finite Element Method (FEM) and a finite difference scheme to calculate sensitivities can be computationally expensive. The adjoint variable method can be used to reduce computational cost. In order to solve multi-objective structural sizing and shape optimization problems efficiently, this paper proposes using the adjoint variable method. The adjoint variable method efficiently calculates multiple sensitivities for objectives that involve structural responses and cuts down computational cost by reducing the number of sensitivity calculations required per design variable.","PeriodicalId":196913,"journal":{"name":"Journal of Computational Science and Technology","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Adjoint Variable Method for Multi-Objective Sizing and Shape Optimization\",\"authors\":\"Chen Jian Ken Lee, Wataru Furuya, Masato Tanaka, N. Takano\",\"doi\":\"10.1299/JCST.3.275\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With smooth objective functions and constraint conditions, gradient-based methods can be used to solve multi-objective optimization problems efficiently. However, when applied to structural sizing optimization problems, using the Finite Element Method (FEM) and a finite difference scheme to calculate sensitivities can be computationally expensive. The adjoint variable method can be used to reduce computational cost. In order to solve multi-objective structural sizing and shape optimization problems efficiently, this paper proposes using the adjoint variable method. The adjoint variable method efficiently calculates multiple sensitivities for objectives that involve structural responses and cuts down computational cost by reducing the number of sensitivity calculations required per design variable.\",\"PeriodicalId\":196913,\"journal\":{\"name\":\"Journal of Computational Science and Technology\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Science and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/JCST.3.275\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JCST.3.275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

基于梯度的优化方法具有光滑的目标函数和约束条件,可以有效地求解多目标优化问题。然而,当应用于结构尺寸优化问题时,使用有限元法(FEM)和有限差分格式来计算灵敏度可能会导致计算成本的增加。采用伴随变量法可以减少计算量。为了有效地解决多目标结构尺寸和形状优化问题,本文提出了伴随变量法。伴随变量法可以有效地计算涉及结构响应的目标的多个灵敏度,并通过减少每个设计变量所需的灵敏度计算次数来降低计算成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Adjoint Variable Method for Multi-Objective Sizing and Shape Optimization
With smooth objective functions and constraint conditions, gradient-based methods can be used to solve multi-objective optimization problems efficiently. However, when applied to structural sizing optimization problems, using the Finite Element Method (FEM) and a finite difference scheme to calculate sensitivities can be computationally expensive. The adjoint variable method can be used to reduce computational cost. In order to solve multi-objective structural sizing and shape optimization problems efficiently, this paper proposes using the adjoint variable method. The adjoint variable method efficiently calculates multiple sensitivities for objectives that involve structural responses and cuts down computational cost by reducing the number of sensitivity calculations required per design variable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and Optimization of a Gas Burner for TPV Application Experimental and Numerical Approaches for Reliability Evaluation of Electronic Packaging Two-Layer Viscous Shallow-Water Equations and Conservation Laws Lattice Boltzmann Simulation of Two-Phase Viscoelastic Fluid Flows An Inexact Balancing Preconditioner for Large-Scale Structural Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1