结合颜色统计的虹膜识别系统

H. Demirel, G. Anbarjafari
{"title":"结合颜色统计的虹膜识别系统","authors":"H. Demirel, G. Anbarjafari","doi":"10.1109/ISSPIT.2008.4775694","DOIUrl":null,"url":null,"abstract":"This paper proposes a high performance iris recognition system based on the probability distribution functions (PDF) of pixels in different colour channels. The PDFs of the segmented iris images are used as statistical feature vectors for the recognition of irises by minimizing the Kullback-Leibler distance (KLD) between the PDF of a given iris and the PDFs of irises in the training set. Feature vector fusion (FVF) and majority voting (MV) methods have been employed to combine feature vectors obtained from different colour channels in YCbCr and RGB colour spaces to improve the recognition performance. The system has been tested on the segmented iris images from the UPOL iris database. The proposed system gives a 98.44% recognition rate on that iris database.","PeriodicalId":213756,"journal":{"name":"2008 IEEE International Symposium on Signal Processing and Information Technology","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Iris Recognition System Using Combined Colour Statistics\",\"authors\":\"H. Demirel, G. Anbarjafari\",\"doi\":\"10.1109/ISSPIT.2008.4775694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a high performance iris recognition system based on the probability distribution functions (PDF) of pixels in different colour channels. The PDFs of the segmented iris images are used as statistical feature vectors for the recognition of irises by minimizing the Kullback-Leibler distance (KLD) between the PDF of a given iris and the PDFs of irises in the training set. Feature vector fusion (FVF) and majority voting (MV) methods have been employed to combine feature vectors obtained from different colour channels in YCbCr and RGB colour spaces to improve the recognition performance. The system has been tested on the segmented iris images from the UPOL iris database. The proposed system gives a 98.44% recognition rate on that iris database.\",\"PeriodicalId\":213756,\"journal\":{\"name\":\"2008 IEEE International Symposium on Signal Processing and Information Technology\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 IEEE International Symposium on Signal Processing and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSPIT.2008.4775694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE International Symposium on Signal Processing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSPIT.2008.4775694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

提出了一种基于不同颜色通道像素概率分布函数(PDF)的高性能虹膜识别系统。将分割后的虹膜图像的PDF作为统计特征向量,通过最小化给定虹膜的PDF与训练集中虹膜的PDF之间的kullbackleibler距离(KLD)来实现虹膜的识别。采用特征向量融合(FVF)和多数投票(MV)方法将YCbCr和RGB色彩空间中不同颜色通道的特征向量进行组合,提高识别性能。该系统已在UPOL虹膜数据库的分割虹膜图像上进行了测试。该系统在虹膜数据库上的识别率为98.44%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Iris Recognition System Using Combined Colour Statistics
This paper proposes a high performance iris recognition system based on the probability distribution functions (PDF) of pixels in different colour channels. The PDFs of the segmented iris images are used as statistical feature vectors for the recognition of irises by minimizing the Kullback-Leibler distance (KLD) between the PDF of a given iris and the PDFs of irises in the training set. Feature vector fusion (FVF) and majority voting (MV) methods have been employed to combine feature vectors obtained from different colour channels in YCbCr and RGB colour spaces to improve the recognition performance. The system has been tested on the segmented iris images from the UPOL iris database. The proposed system gives a 98.44% recognition rate on that iris database.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial signals addition for reducing PAPR of OFDM systems Iris Recognition System Using Combined Colour Statistics An Implementation of the Blowfish Cryptosystem Bspline based Wavelets with Lifting Implementation Advanced Bandwidth Brokering Architecture in PLC Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1