基于辅助对象挖掘的智能协同跟踪

Ming Yang, Ying Wu, S. Lao
{"title":"基于辅助对象挖掘的智能协同跟踪","authors":"Ming Yang, Ying Wu, S. Lao","doi":"10.1109/CVPR.2006.157","DOIUrl":null,"url":null,"abstract":"Many tracking methods face a fundamental dilemma in practice: tracking has to be computationally efficient but verifying if or not the tracker is following the true target tends to be demanding, especially when the background is cluttered and/or when occlusion occurs. Due to the lack of a good solution to this problem, many existing methods tend to be either computationally intensive with the use of sophisticated image observation models, or vulnerable to the false alarms. This greatly threatens long-duration robust tracking. This paper presents a novel solution to this dilemma by integrating into the tracking process a set of auxiliary objects that are automatically discovered in the video on the fly by data mining. Auxiliary objects have three properties at least in a short time interval: (1) persistent co-occurrence with the target; (2) consistent motion correlation with the target; and (3) easy to track. The collaborative tracking of these auxiliary objects leads to an efficient computation as well as a strong verification. Our extensive experiments have exhibited exciting performance in very challenging real-world testing cases.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"251 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Intelligent Collaborative Tracking by Mining Auxiliary Objects\",\"authors\":\"Ming Yang, Ying Wu, S. Lao\",\"doi\":\"10.1109/CVPR.2006.157\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many tracking methods face a fundamental dilemma in practice: tracking has to be computationally efficient but verifying if or not the tracker is following the true target tends to be demanding, especially when the background is cluttered and/or when occlusion occurs. Due to the lack of a good solution to this problem, many existing methods tend to be either computationally intensive with the use of sophisticated image observation models, or vulnerable to the false alarms. This greatly threatens long-duration robust tracking. This paper presents a novel solution to this dilemma by integrating into the tracking process a set of auxiliary objects that are automatically discovered in the video on the fly by data mining. Auxiliary objects have three properties at least in a short time interval: (1) persistent co-occurrence with the target; (2) consistent motion correlation with the target; and (3) easy to track. The collaborative tracking of these auxiliary objects leads to an efficient computation as well as a strong verification. Our extensive experiments have exhibited exciting performance in very challenging real-world testing cases.\",\"PeriodicalId\":421737,\"journal\":{\"name\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"volume\":\"251 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2006.157\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.157","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35

摘要

许多跟踪方法在实践中面临着一个基本的困境:跟踪必须具有计算效率,但验证跟踪器是否跟踪真实目标往往是苛刻的,特别是当背景混乱和/或遮挡发生时。由于缺乏很好的解决方案,现有的许多方法要么使用复杂的图像观测模型计算量大,要么容易产生误报。这极大地威胁到长时间的稳健跟踪。本文提出了一种新颖的解决方案,即在跟踪过程中集成一组通过数据挖掘在视频中动态自动发现的辅助对象。辅助对象至少在短时间间隔内具有三个属性:(1)与目标持续共现;(2)与目标运动相关性一致;(3)易于跟踪。这些辅助目标的协同跟踪使得计算效率高,验证能力强。我们广泛的实验在非常具有挑战性的现实世界测试案例中展示了令人兴奋的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Intelligent Collaborative Tracking by Mining Auxiliary Objects
Many tracking methods face a fundamental dilemma in practice: tracking has to be computationally efficient but verifying if or not the tracker is following the true target tends to be demanding, especially when the background is cluttered and/or when occlusion occurs. Due to the lack of a good solution to this problem, many existing methods tend to be either computationally intensive with the use of sophisticated image observation models, or vulnerable to the false alarms. This greatly threatens long-duration robust tracking. This paper presents a novel solution to this dilemma by integrating into the tracking process a set of auxiliary objects that are automatically discovered in the video on the fly by data mining. Auxiliary objects have three properties at least in a short time interval: (1) persistent co-occurrence with the target; (2) consistent motion correlation with the target; and (3) easy to track. The collaborative tracking of these auxiliary objects leads to an efficient computation as well as a strong verification. Our extensive experiments have exhibited exciting performance in very challenging real-world testing cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Dynamic Bayesian Network Model for Autonomous 3D Reconstruction from a Single Indoor Image Efficient Maximally Stable Extremal Region (MSER) Tracking Transformation invariant component analysis for binary images Region-Tree Based Stereo Using Dynamic Programming Optimization Probabilistic 3D Polyp Detection in CT Images: The Role of Sample Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1