国民生产总值问题的最优非分配成本

M. Levedahl, J. D. Glass
{"title":"国民生产总值问题的最优非分配成本","authors":"M. Levedahl, J. D. Glass","doi":"10.1109/AERO47225.2020.9172284","DOIUrl":null,"url":null,"abstract":"The global nearest pattern (GNP) approach to data association is closely related to the global nearest neighbor (GNN) problem, and both require that a cost of non-assignment of tracks be established. The existing theory for GNN can be reasonably applied to GNP problems, but adjustments are required to optimally account for bias estimation and uncertainty in GNP. These adjustments are presented along with Monte Carlo analysis showing the achieved performance is nearly optimal.","PeriodicalId":114560,"journal":{"name":"2020 IEEE Aerospace Conference","volume":"119 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Optimal Non-Assignment Costs for the GNP Problem\",\"authors\":\"M. Levedahl, J. D. Glass\",\"doi\":\"10.1109/AERO47225.2020.9172284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The global nearest pattern (GNP) approach to data association is closely related to the global nearest neighbor (GNN) problem, and both require that a cost of non-assignment of tracks be established. The existing theory for GNN can be reasonably applied to GNP problems, but adjustments are required to optimally account for bias estimation and uncertainty in GNP. These adjustments are presented along with Monte Carlo analysis showing the achieved performance is nearly optimal.\",\"PeriodicalId\":114560,\"journal\":{\"name\":\"2020 IEEE Aerospace Conference\",\"volume\":\"119 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Aerospace Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AERO47225.2020.9172284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO47225.2020.9172284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

数据关联的全球最近模式(GNP)方法与全球最近邻(GNN)问题密切相关,两者都需要建立轨迹不分配的代价。GNN的现有理论可以合理地应用于国民生产总值问题,但需要进行调整,以最佳地考虑国民生产总值中的偏差估计和不确定性。这些调整与蒙特卡罗分析一起呈现,显示所实现的性能几乎是最佳的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Non-Assignment Costs for the GNP Problem
The global nearest pattern (GNP) approach to data association is closely related to the global nearest neighbor (GNN) problem, and both require that a cost of non-assignment of tracks be established. The existing theory for GNN can be reasonably applied to GNP problems, but adjustments are required to optimally account for bias estimation and uncertainty in GNP. These adjustments are presented along with Monte Carlo analysis showing the achieved performance is nearly optimal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Integrated Innovative 3D Radiation Protection Fabric for Advanced Spacesuits and Systems Model-based Tools designed for the FACE™ Technical Standard, Editions 3.0 & 2.1 Can Adaptive Response and Evolution Make Survival of Extremophile Bacteria Possible on Mars? Initial Orbit Determination Using Simplex Fusion Headline-based visualization to prioritize events
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1