基于开放数据集的NSLBP脊柱解剖参数预测模型

{"title":"基于开放数据集的NSLBP脊柱解剖参数预测模型","authors":"","doi":"10.33140/mcr.05.09.06","DOIUrl":null,"url":null,"abstract":"Objective: The purpose of this study is to perform analysis through the low back pain open data set to predict the incidence of non-specific chronic low back pain (NSLBP) to obtain a more accurate and convenient sagittal spinopelvic parameter model. Methods: The logistic regression analysis and multilayer perceptron (MLP) algorithm is used to construct a NSLBP prediction model based on the parameters of the spinopelvic parameters from open data source. Results: Degree of spondylolisthesis (DS), Pelvic radius (PR), Sacral slope (SS), Pelvic tilt (PT) are four predictors screened out by regression analysis that have significant predictive power for the risk of NSLBP. The overall accuracy of the equation prediction model is 85.8%.The MLP network algorithm determines that DS is the most powerful predictor of NSLBP through more precise modeling. The model has good predictive ability of 95.2% of accuracy. Conclusions: MLP models play a more accurate role in the construction of predictive models. Computer science is playing a greater role in helping precision medicine clinical research.","PeriodicalId":186238,"journal":{"name":"Medical & Clinical Research","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spinopelvic Anatomic Parameters Prediction Model of NSLBP based on open dataset\",\"authors\":\"\",\"doi\":\"10.33140/mcr.05.09.06\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: The purpose of this study is to perform analysis through the low back pain open data set to predict the incidence of non-specific chronic low back pain (NSLBP) to obtain a more accurate and convenient sagittal spinopelvic parameter model. Methods: The logistic regression analysis and multilayer perceptron (MLP) algorithm is used to construct a NSLBP prediction model based on the parameters of the spinopelvic parameters from open data source. Results: Degree of spondylolisthesis (DS), Pelvic radius (PR), Sacral slope (SS), Pelvic tilt (PT) are four predictors screened out by regression analysis that have significant predictive power for the risk of NSLBP. The overall accuracy of the equation prediction model is 85.8%.The MLP network algorithm determines that DS is the most powerful predictor of NSLBP through more precise modeling. The model has good predictive ability of 95.2% of accuracy. Conclusions: MLP models play a more accurate role in the construction of predictive models. Computer science is playing a greater role in helping precision medicine clinical research.\",\"PeriodicalId\":186238,\"journal\":{\"name\":\"Medical & Clinical Research\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical & Clinical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33140/mcr.05.09.06\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical & Clinical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33140/mcr.05.09.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:本研究的目的是通过腰痛开放数据集进行分析,预测非特异性慢性腰痛(NSLBP)的发生率,以获得更准确、方便的矢状椎盂参数模型。方法:采用logistic回归分析和多层感知器(multilayer perceptron, MLP)算法,基于开放数据源的椎体参数参数构建NSLBP预测模型。结果:通过回归分析筛选出4个预测因素,分别为椎体滑脱度(DS)、骨盆半径(PR)、骶骨坡度(SS)、骨盆倾斜(PT),对NSLBP风险有显著预测能力。方程预测模型的总体精度为85.8%。MLP网络算法通过更精确的建模,确定了DS是NSLBP最强大的预测器。该模型具有良好的预测能力,准确率达95.2%。结论:MLP模型在构建预测模型中具有更准确的作用。计算机科学在帮助精准医学临床研究方面发挥着更大的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Spinopelvic Anatomic Parameters Prediction Model of NSLBP based on open dataset
Objective: The purpose of this study is to perform analysis through the low back pain open data set to predict the incidence of non-specific chronic low back pain (NSLBP) to obtain a more accurate and convenient sagittal spinopelvic parameter model. Methods: The logistic regression analysis and multilayer perceptron (MLP) algorithm is used to construct a NSLBP prediction model based on the parameters of the spinopelvic parameters from open data source. Results: Degree of spondylolisthesis (DS), Pelvic radius (PR), Sacral slope (SS), Pelvic tilt (PT) are four predictors screened out by regression analysis that have significant predictive power for the risk of NSLBP. The overall accuracy of the equation prediction model is 85.8%.The MLP network algorithm determines that DS is the most powerful predictor of NSLBP through more precise modeling. The model has good predictive ability of 95.2% of accuracy. Conclusions: MLP models play a more accurate role in the construction of predictive models. Computer science is playing a greater role in helping precision medicine clinical research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Do Nucleic Acid–Binding Polymers (Nabps) May Be Reduce Proinflammatory Nucleic Acids Among Trauma-Associated Hemorrhagic Shock? Complex Treatment of A Rare Non-Germinomatous Germ Cell Optic-Chiasmal Brain Tumor In An Adolescent Child-A Clinical Case With Literature Review Musculoskeletal Ultrasound to Identify Changes in Obliquus Capitis Inferior Muscle & Position of Atlas After a Manual Stretch Demographic Incidence of Cutaneous Leishmaniasis in Patients of Wasit Province, Iraq Research of the Potential Radioprotective Activity of Trimethyl Glycine and N-Acetyl-L-Cysteine with Quantitative Analysis Using Real-Time Polymerase Chain Reaction (QRT-PCR)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1