利用翻译下的豪斯多夫距离对图像进行比较

D. Huttenlocher, W. Rucklidge, G. A. Klanderman
{"title":"利用翻译下的豪斯多夫距离对图像进行比较","authors":"D. Huttenlocher, W. Rucklidge, G. A. Klanderman","doi":"10.1109/CVPR.1992.223209","DOIUrl":null,"url":null,"abstract":"Efficient algorithms are provided for computing the Hausdorff distance between a binary image and all possible relative positions (translations) of a model, or a portion of that model. The computation is in many ways similar to binary correlation. However, it is more tolerant of perturbations in the locations of points because it measures proximity rather than exact superposition.<<ETX>>","PeriodicalId":325476,"journal":{"name":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","volume":"130 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1992-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"102","resultStr":"{\"title\":\"Comparing images using the Hausdorff distance under translation\",\"authors\":\"D. Huttenlocher, W. Rucklidge, G. A. Klanderman\",\"doi\":\"10.1109/CVPR.1992.223209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Efficient algorithms are provided for computing the Hausdorff distance between a binary image and all possible relative positions (translations) of a model, or a portion of that model. The computation is in many ways similar to binary correlation. However, it is more tolerant of perturbations in the locations of points because it measures proximity rather than exact superposition.<<ETX>>\",\"PeriodicalId\":325476,\"journal\":{\"name\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"volume\":\"130 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1992-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"102\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1992.223209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1992.223209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 102

摘要

提供了用于计算二值图像与模型或该模型的一部分的所有可能相对位置(平移)之间的Hausdorff距离的有效算法。这种计算在许多方面类似于二值相关。然而,它对点位置的扰动更有容忍度,因为它测量的是接近性而不是精确的叠加性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparing images using the Hausdorff distance under translation
Efficient algorithms are provided for computing the Hausdorff distance between a binary image and all possible relative positions (translations) of a model, or a portion of that model. The computation is in many ways similar to binary correlation. However, it is more tolerant of perturbations in the locations of points because it measures proximity rather than exact superposition.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Motion trajectories An heterogeneous M-SIMD architecture for Kalman filter controlled processing of image sequences Recognizing 3D objects from 2D images: an error analysis On the derivation of geometric constraints in stereo Computing stereo correspondences in the presence of narrow occluding objects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1