用截尾正态分布对具有检测限的变量建模

Justin R. Williams, Hyung-Woo Kim, C. Crespi
{"title":"用截尾正态分布对具有检测限的变量建模","authors":"Justin R. Williams, Hyung-Woo Kim, C. Crespi","doi":"10.21203/rs.2.20251/v1","DOIUrl":null,"url":null,"abstract":"\n Background: When data are collected subject to a detection limit, observations below the detection limit may be considered censored. In addition, the domain of such observations may be restricted; for example, values may be required to be non-negative. Methods We propose a regression method for censored observations that also accounts for domain restriction. The method finds maximum likelihood estimates assuming an underlying truncated normal distribution. Results: We show that our method, tcensReg, outperforms other methods commonly used for data with detection limits such as Tobit regression and single imputation of the detection limit or half detection limit with respect to bias and mean squared error under a range of simulation settings. We apply our method to analyze vision quality data collected from ophthalmology clinical trials comparing different types of intraocular lenses implanted during cataract surgery. All methods tested returned similar conclusions for non-inferiority testing, but estimates from the tcensReg method suggest that there may be greater mean differences and overall variability. Conclusions: In the presence of detection limits, our new method tcensReg provides a way to incorporate known domain restrictions when modeling limited dependent variables that substantially improves inferences.","PeriodicalId":409996,"journal":{"name":"arXiv: Applications","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Variables with a Detection Limit using a Truncated Normal Distribution with Censoring\",\"authors\":\"Justin R. Williams, Hyung-Woo Kim, C. Crespi\",\"doi\":\"10.21203/rs.2.20251/v1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Background: When data are collected subject to a detection limit, observations below the detection limit may be considered censored. In addition, the domain of such observations may be restricted; for example, values may be required to be non-negative. Methods We propose a regression method for censored observations that also accounts for domain restriction. The method finds maximum likelihood estimates assuming an underlying truncated normal distribution. Results: We show that our method, tcensReg, outperforms other methods commonly used for data with detection limits such as Tobit regression and single imputation of the detection limit or half detection limit with respect to bias and mean squared error under a range of simulation settings. We apply our method to analyze vision quality data collected from ophthalmology clinical trials comparing different types of intraocular lenses implanted during cataract surgery. All methods tested returned similar conclusions for non-inferiority testing, but estimates from the tcensReg method suggest that there may be greater mean differences and overall variability. Conclusions: In the presence of detection limits, our new method tcensReg provides a way to incorporate known domain restrictions when modeling limited dependent variables that substantially improves inferences.\",\"PeriodicalId\":409996,\"journal\":{\"name\":\"arXiv: Applications\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21203/rs.2.20251/v1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21203/rs.2.20251/v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:当收集的数据受检测限限制时,低于检测限的观测值可被认为是删节的。此外,这种观察的范围可能受到限制;例如,值可能需要是非负的。我们提出了一种考虑域限制的截尾观测的回归方法。该方法在假设基础截断正态分布的情况下找到最大似然估计。结果:我们表明,在一系列模拟设置下,我们的方法tcensReg优于其他通常用于具有检测限的数据的方法,如Tobit回归和检测限或半检测限的单次输入,涉及偏差和均方误差。我们应用我们的方法来分析从眼科临床试验中收集的视力质量数据,比较不同类型的人工晶状体在白内障手术中植入。对于非劣效性检验,所有测试的方法都得到了类似的结论,但从tcensReg方法的估计表明,可能存在更大的平均差异和总体变异性。结论:在存在检测限的情况下,我们的新方法tcensReg提供了一种在建模有限的因变量时合并已知域限制的方法,从而大大提高了推断。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling Variables with a Detection Limit using a Truncated Normal Distribution with Censoring
Background: When data are collected subject to a detection limit, observations below the detection limit may be considered censored. In addition, the domain of such observations may be restricted; for example, values may be required to be non-negative. Methods We propose a regression method for censored observations that also accounts for domain restriction. The method finds maximum likelihood estimates assuming an underlying truncated normal distribution. Results: We show that our method, tcensReg, outperforms other methods commonly used for data with detection limits such as Tobit regression and single imputation of the detection limit or half detection limit with respect to bias and mean squared error under a range of simulation settings. We apply our method to analyze vision quality data collected from ophthalmology clinical trials comparing different types of intraocular lenses implanted during cataract surgery. All methods tested returned similar conclusions for non-inferiority testing, but estimates from the tcensReg method suggest that there may be greater mean differences and overall variability. Conclusions: In the presence of detection limits, our new method tcensReg provides a way to incorporate known domain restrictions when modeling limited dependent variables that substantially improves inferences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Weekly Bayesian Modelling Strategy to Predict Deaths by COVID-19: a Model and Case Study for the State of Santa Catarina, Brazil Selecting the Most Effective Nudge: Evidence from a Large-Scale Experiment on Immunization Revealing the Transmission Dynamics of COVID-19: A Bayesian Framework for Rt Estimation Improving living biomass C-stock loss estimates by combining optical satellite, airborne laser scanning, and NFI data Bayesian classification for dating archaeological sites via projectile points.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1