Narges Hossein-Zadeh, M. Daliri, S. Magierowski, E. Ghafar-Zadeh
{"title":"一种新型全差分核磁共振收发器","authors":"Narges Hossein-Zadeh, M. Daliri, S. Magierowski, E. Ghafar-Zadeh","doi":"10.1109/LSC.2018.8572220","DOIUrl":null,"url":null,"abstract":"The realization of miniaturized Nuclear Magnetic Resonance (NMR) technology has received significant attention from researchers in both industry and academia. In this paper, we take a step toward the development of a fully integrated NMR by addressing the challenge of background magnetic resonance (MR) signal cancellation. A new fully differential oscillator-based NMR transceiver is proposed. This topology can suppress the background MR signal and enhance the sensitivity of the NMR transceiver. The proposed circuit contains a LC-Tank oscillator incorporated with a variable gain amplifier (VGA). This NMR transceiver is designed at 21 MHz NMR frequency. Post-layout simulations of the integrated circuit were performed using $0.18-\\mu \\mathbf{m}$ CMOS technology. These results prove the functionality and applicability of the proposed circuit for NMR applications using a commercially available 0.5-Tesla magnet.","PeriodicalId":254835,"journal":{"name":"2018 IEEE Life Sciences Conference (LSC)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Fully Differential NMR Transciever\",\"authors\":\"Narges Hossein-Zadeh, M. Daliri, S. Magierowski, E. Ghafar-Zadeh\",\"doi\":\"10.1109/LSC.2018.8572220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The realization of miniaturized Nuclear Magnetic Resonance (NMR) technology has received significant attention from researchers in both industry and academia. In this paper, we take a step toward the development of a fully integrated NMR by addressing the challenge of background magnetic resonance (MR) signal cancellation. A new fully differential oscillator-based NMR transceiver is proposed. This topology can suppress the background MR signal and enhance the sensitivity of the NMR transceiver. The proposed circuit contains a LC-Tank oscillator incorporated with a variable gain amplifier (VGA). This NMR transceiver is designed at 21 MHz NMR frequency. Post-layout simulations of the integrated circuit were performed using $0.18-\\\\mu \\\\mathbf{m}$ CMOS technology. These results prove the functionality and applicability of the proposed circuit for NMR applications using a commercially available 0.5-Tesla magnet.\",\"PeriodicalId\":254835,\"journal\":{\"name\":\"2018 IEEE Life Sciences Conference (LSC)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Life Sciences Conference (LSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LSC.2018.8572220\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Life Sciences Conference (LSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSC.2018.8572220","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The realization of miniaturized Nuclear Magnetic Resonance (NMR) technology has received significant attention from researchers in both industry and academia. In this paper, we take a step toward the development of a fully integrated NMR by addressing the challenge of background magnetic resonance (MR) signal cancellation. A new fully differential oscillator-based NMR transceiver is proposed. This topology can suppress the background MR signal and enhance the sensitivity of the NMR transceiver. The proposed circuit contains a LC-Tank oscillator incorporated with a variable gain amplifier (VGA). This NMR transceiver is designed at 21 MHz NMR frequency. Post-layout simulations of the integrated circuit were performed using $0.18-\mu \mathbf{m}$ CMOS technology. These results prove the functionality and applicability of the proposed circuit for NMR applications using a commercially available 0.5-Tesla magnet.