预测转发流行度的聚类Bert模型

Surbhi Kakar, Deepali Dhaka, Monica Mehrotra
{"title":"预测转发流行度的聚类Bert模型","authors":"Surbhi Kakar, Deepali Dhaka, Monica Mehrotra","doi":"10.1109/ICACSIS56558.2022.9923496","DOIUrl":null,"url":null,"abstract":"This work aims to predict retweet popularity of covid19 tweet corpus. Our work fuses unsupervised and supervised learning techniques to create retweet popularity model. In the first phase, we use a Clustered Bert model, which works on clustering the Bert embeddings using clustering algorithms on the textual data to generate novel and meaningful feature set for our model. In the second phase, we use the output of Clustered Bert model as an input to the Supervised Regression models intending to predict retweet popularity. Our work also draws a comparison between features from numeric model; emotions/sentiment model; and Clustered Bert model. Three different Regression models, belonging to different categories: Nearest Neighbors, Ensemble and Stacked models are then tested on the final feature-set to generate predictions for our model. The results show higher accuracy when the Clustered Bert model is used in combination with numerical and emotion/sentiment model. The experiment shows better results for Stacked Regression models out of all the three regressors used for our study.","PeriodicalId":165728,"journal":{"name":"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Clustered Bert Model for predicting Retweet Popularity\",\"authors\":\"Surbhi Kakar, Deepali Dhaka, Monica Mehrotra\",\"doi\":\"10.1109/ICACSIS56558.2022.9923496\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work aims to predict retweet popularity of covid19 tweet corpus. Our work fuses unsupervised and supervised learning techniques to create retweet popularity model. In the first phase, we use a Clustered Bert model, which works on clustering the Bert embeddings using clustering algorithms on the textual data to generate novel and meaningful feature set for our model. In the second phase, we use the output of Clustered Bert model as an input to the Supervised Regression models intending to predict retweet popularity. Our work also draws a comparison between features from numeric model; emotions/sentiment model; and Clustered Bert model. Three different Regression models, belonging to different categories: Nearest Neighbors, Ensemble and Stacked models are then tested on the final feature-set to generate predictions for our model. The results show higher accuracy when the Clustered Bert model is used in combination with numerical and emotion/sentiment model. The experiment shows better results for Stacked Regression models out of all the three regressors used for our study.\",\"PeriodicalId\":165728,\"journal\":{\"name\":\"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICACSIS56558.2022.9923496\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Advanced Computer Science and Information Systems (ICACSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACSIS56558.2022.9923496","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本工作旨在预测covid - 19推文语料库的转发流行度。我们的工作融合了无监督和有监督学习技术来创建转发流行模型。在第一阶段,我们使用聚类Bert模型,该模型使用文本数据上的聚类算法对Bert嵌入进行聚类,为我们的模型生成新颖且有意义的特征集。在第二阶段,我们使用聚类伯特模型的输出作为监督回归模型的输入,旨在预测转发流行度。我们的工作还从数值模型中得出了特征的比较;情感/情绪模型;和聚类伯特模型。三种不同的回归模型,属于不同的类别:最近邻,集成和堆叠模型,然后在最终的特征集上进行测试,为我们的模型生成预测。结果表明,将聚类Bert模型与数值模型和情感/情感模型结合使用时,准确率更高。实验表明,在我们研究中使用的所有三种回归量中,堆叠回归模型的结果更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Clustered Bert Model for predicting Retweet Popularity
This work aims to predict retweet popularity of covid19 tweet corpus. Our work fuses unsupervised and supervised learning techniques to create retweet popularity model. In the first phase, we use a Clustered Bert model, which works on clustering the Bert embeddings using clustering algorithms on the textual data to generate novel and meaningful feature set for our model. In the second phase, we use the output of Clustered Bert model as an input to the Supervised Regression models intending to predict retweet popularity. Our work also draws a comparison between features from numeric model; emotions/sentiment model; and Clustered Bert model. Three different Regression models, belonging to different categories: Nearest Neighbors, Ensemble and Stacked models are then tested on the final feature-set to generate predictions for our model. The results show higher accuracy when the Clustered Bert model is used in combination with numerical and emotion/sentiment model. The experiment shows better results for Stacked Regression models out of all the three regressors used for our study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determining An Optimal Airport Location For Country Capital Case Study: Capital Region Nusantara Clustered Bert Model for predicting Retweet Popularity Placement Analysis ofGCI Radar For Supporting Indonesia Air Defense Using Geographic Information System (Case Study: West Kalimantan) Improved Single Shot Detector with Enhanced Hard Negative Mining Approach Classification of Stroke and Non-Stroke Patients from Human Body Movements using Smartphone Videos and Deep Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1