使用Myo臂章提取五种时间序列肌电特征的比较

Z. Arief, I. A. Sulistijono, Roby Awal Ardiansyah
{"title":"使用Myo臂章提取五种时间序列肌电特征的比较","authors":"Z. Arief, I. A. Sulistijono, Roby Awal Ardiansyah","doi":"10.1109/ELECSYM.2015.7380805","DOIUrl":null,"url":null,"abstract":"Feature extraction is meant to get representation and information that embedded in the signals, this is necessary to minimize complexity of implementation and reduce the cost of information processing. Recently, there are many methods for features extraction. This research is comparing five feature extractions from eight channels electromyography (EMG) signals that obtained from Myo Armband located on forearm muscles in order to get significant differences when hand do some movements. The time series features extraction that evaluated are Mean Absolute Value (MAV), Variance (VAR), Willison Amplitude (WAMP), Waveform Length (WL), and Zero Crossing (ZC). The variety of hand movement are fist, rest, half-fist, gun-point, and mid-finger fold. Moreover, the result shows that the rank of evaluated features extraction always showhs same results in four experiment, MAV is always giving the best performance WL. From this finding, MAV and WL are two recommendation for time series features extraction. This rank of time series features extraction gives worthiness when process information in future development research.","PeriodicalId":248906,"journal":{"name":"2015 International Electronics Symposium (IES)","volume":"112 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"62","resultStr":"{\"title\":\"Comparison of five time series EMG features extractions using Myo Armband\",\"authors\":\"Z. Arief, I. A. Sulistijono, Roby Awal Ardiansyah\",\"doi\":\"10.1109/ELECSYM.2015.7380805\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature extraction is meant to get representation and information that embedded in the signals, this is necessary to minimize complexity of implementation and reduce the cost of information processing. Recently, there are many methods for features extraction. This research is comparing five feature extractions from eight channels electromyography (EMG) signals that obtained from Myo Armband located on forearm muscles in order to get significant differences when hand do some movements. The time series features extraction that evaluated are Mean Absolute Value (MAV), Variance (VAR), Willison Amplitude (WAMP), Waveform Length (WL), and Zero Crossing (ZC). The variety of hand movement are fist, rest, half-fist, gun-point, and mid-finger fold. Moreover, the result shows that the rank of evaluated features extraction always showhs same results in four experiment, MAV is always giving the best performance WL. From this finding, MAV and WL are two recommendation for time series features extraction. This rank of time series features extraction gives worthiness when process information in future development research.\",\"PeriodicalId\":248906,\"journal\":{\"name\":\"2015 International Electronics Symposium (IES)\",\"volume\":\"112 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"62\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 International Electronics Symposium (IES)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELECSYM.2015.7380805\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Electronics Symposium (IES)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELECSYM.2015.7380805","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 62

摘要

特征提取是指获取嵌入信号中的表示和信息,这是最小化实现复杂性和降低信息处理成本所必需的。近年来,有许多特征提取方法。本研究通过对前臂肌肉上的肌环所获得的8通道肌电图信号进行5个特征提取的比较,得出手在进行某些动作时的显著差异。评估的时间序列特征提取包括平均绝对值(MAV)、方差(VAR)、威尔逊幅度(WAMP)、波形长度(WL)和过零(ZC)。各种各样的手的运动是拳头,休息,半拳,枪点,中指折叠。此外,结果表明,在4个实验中,评估特征提取的排序结果总是相同的,MAV总是给出最好的WL性能。基于这一发现,MAV和WL是时间序列特征提取的两种推荐方法。这种时序特征的提取对今后开发研究中处理信息具有一定的价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison of five time series EMG features extractions using Myo Armband
Feature extraction is meant to get representation and information that embedded in the signals, this is necessary to minimize complexity of implementation and reduce the cost of information processing. Recently, there are many methods for features extraction. This research is comparing five feature extractions from eight channels electromyography (EMG) signals that obtained from Myo Armband located on forearm muscles in order to get significant differences when hand do some movements. The time series features extraction that evaluated are Mean Absolute Value (MAV), Variance (VAR), Willison Amplitude (WAMP), Waveform Length (WL), and Zero Crossing (ZC). The variety of hand movement are fist, rest, half-fist, gun-point, and mid-finger fold. Moreover, the result shows that the rank of evaluated features extraction always showhs same results in four experiment, MAV is always giving the best performance WL. From this finding, MAV and WL are two recommendation for time series features extraction. This rank of time series features extraction gives worthiness when process information in future development research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
River water-quality analysis: “critical contaminate detection”, “classification of multiple-water-quality-parameters values” and “real-time notification” by rspa processes Comparison of five time series EMG features extractions using Myo Armband Validity currency detector with optical sensor using backpropagation Mobile monitoring of muscular strain sensor based on Wireless Body Area Network Using of array of 8 ultrasonic transducers On accoustic tomography for image reconstruction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1