热启动顺序选择的最优多次停止规则

Mathilde Fekom, N. Vayatis, Argyris Kalogeratos
{"title":"热启动顺序选择的最优多次停止规则","authors":"Mathilde Fekom, N. Vayatis, Argyris Kalogeratos","doi":"10.1109/ICTAI.2019.00202","DOIUrl":null,"url":null,"abstract":"In this paper we present the Warm-starting Dynamic Thresholding algorithm, developed using dynamic programming, for a variant of the standard online selection problem. The problem allows job positions to be either free or already occupied at the beginning of the process. Throughout the selection process, the decision maker interviews one after the other the new candidates and reveals a quality score for each of them. Based on that information, she can (re) assign each job at most once by taking immediate and irrevocable decisions. We relax the hard requirement of the class of dynamic programming algorithms to perfectly know the distribution from which the scores of candidates are drawn, by presenting extensions for the partial and no-information cases, in which the decision maker can learn the underlying score distribution sequentially while interviewing candidates.","PeriodicalId":346657,"journal":{"name":"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimal Multiple Stopping Rule for Warm-Starting Sequential Selection\",\"authors\":\"Mathilde Fekom, N. Vayatis, Argyris Kalogeratos\",\"doi\":\"10.1109/ICTAI.2019.00202\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present the Warm-starting Dynamic Thresholding algorithm, developed using dynamic programming, for a variant of the standard online selection problem. The problem allows job positions to be either free or already occupied at the beginning of the process. Throughout the selection process, the decision maker interviews one after the other the new candidates and reveals a quality score for each of them. Based on that information, she can (re) assign each job at most once by taking immediate and irrevocable decisions. We relax the hard requirement of the class of dynamic programming algorithms to perfectly know the distribution from which the scores of candidates are drawn, by presenting extensions for the partial and no-information cases, in which the decision maker can learn the underlying score distribution sequentially while interviewing candidates.\",\"PeriodicalId\":346657,\"journal\":{\"name\":\"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2019.00202\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 31st International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2019.00202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种基于动态规划的热启动动态阈值算法,用于解决标准在线选择问题的一个变体。该问题允许工作位置在流程开始时空闲或已被占用。在整个选拔过程中,决策者一个接一个地面试新候选人,并为他们每个人提供一个质量分数。基于这些信息,她可以通过立即和不可撤销的决定,最多分配一次每项工作。本文通过对部分信息和无信息情况的扩展,放宽了动态规划算法对完全了解候选人分数分布的硬性要求,使决策者可以在面试候选人时依次了解潜在的分数分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal Multiple Stopping Rule for Warm-Starting Sequential Selection
In this paper we present the Warm-starting Dynamic Thresholding algorithm, developed using dynamic programming, for a variant of the standard online selection problem. The problem allows job positions to be either free or already occupied at the beginning of the process. Throughout the selection process, the decision maker interviews one after the other the new candidates and reveals a quality score for each of them. Based on that information, she can (re) assign each job at most once by taking immediate and irrevocable decisions. We relax the hard requirement of the class of dynamic programming algorithms to perfectly know the distribution from which the scores of candidates are drawn, by presenting extensions for the partial and no-information cases, in which the decision maker can learn the underlying score distribution sequentially while interviewing candidates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Monaural Music Source Separation using a ResNet Latent Separator Network Graph-Based Attention Networks for Aspect Level Sentiment Analysis A Multi-channel Neural Network for Imbalanced Emotion Recognition Scaling up Prediction of Psychosis by Natural Language Processing Improving Bandit-Based Recommendations with Spatial Context Reasoning: An Online Evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1