基于光谱和纹理特征的特征空间可视化

E. Myasnikov
{"title":"基于光谱和纹理特征的特征空间可视化","authors":"E. Myasnikov","doi":"10.1109/ITNT57377.2023.10139108","DOIUrl":null,"url":null,"abstract":"The paper presents a method for visualizing feature spaces describing the pixels of hyperspectral images based on spectral and texture characteristics. The proposed method allows using various measures of spectral dissimilarity between image pixels along with textural features. The method is based on an implicit transition to intermediate feature representations using the calculation of pairwise dissimilarities between data points in input feature spaces, followed by the reconstruction of feature vectors in 3D space and interactive data visualization. The proposed approach is investigated on publicly available hyperspectral scenes using quantitative estimates and visual analysis.","PeriodicalId":296438,"journal":{"name":"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Visualization of feature spaces based on spectral and texture characteristics\",\"authors\":\"E. Myasnikov\",\"doi\":\"10.1109/ITNT57377.2023.10139108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a method for visualizing feature spaces describing the pixels of hyperspectral images based on spectral and texture characteristics. The proposed method allows using various measures of spectral dissimilarity between image pixels along with textural features. The method is based on an implicit transition to intermediate feature representations using the calculation of pairwise dissimilarities between data points in input feature spaces, followed by the reconstruction of feature vectors in 3D space and interactive data visualization. The proposed approach is investigated on publicly available hyperspectral scenes using quantitative estimates and visual analysis.\",\"PeriodicalId\":296438,\"journal\":{\"name\":\"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITNT57377.2023.10139108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IX International Conference on Information Technology and Nanotechnology (ITNT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITNT57377.2023.10139108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种基于光谱和纹理特征的高光谱图像像素特征空间可视化方法。所提出的方法允许使用图像像素之间的光谱不相似性的各种度量以及纹理特征。该方法通过计算输入特征空间中数据点之间的两两不相似度,隐式过渡到中间特征表示,然后在三维空间中重建特征向量并进行交互式数据可视化。采用定量估计和视觉分析的方法对公开可用的高光谱场景进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Visualization of feature spaces based on spectral and texture characteristics
The paper presents a method for visualizing feature spaces describing the pixels of hyperspectral images based on spectral and texture characteristics. The proposed method allows using various measures of spectral dissimilarity between image pixels along with textural features. The method is based on an implicit transition to intermediate feature representations using the calculation of pairwise dissimilarities between data points in input feature spaces, followed by the reconstruction of feature vectors in 3D space and interactive data visualization. The proposed approach is investigated on publicly available hyperspectral scenes using quantitative estimates and visual analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cooperative Application of Vehicular Traffic Rerouting Method and Adaptive Traffic Signal Control Method Analysis of the Influence of Space Weather Factors on the Telemetry Parameters of Small Spacecraft in Low Earth Orbit Correlations and Statistical Memory Effects as Markers of Age-related Changes in Complex Systems of Living Nature Visualization of feature spaces based on spectral and texture characteristics Electrically controlled optical spectral filters for WDM communication networks based on multilayer inhomogeneous holographic diffraction structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1