{"title":"变型图像金字塔","authors":"J. Gluckman","doi":"10.1109/CVPR.2006.265","DOIUrl":null,"url":null,"abstract":"Multi-scale representations are motivated by the scale invariant properties of natural images. While many low level statistical measures, such as the local mean and variance of intensity, behave in a scale invariant manner, there are many higher order deviations from scale invariance where zero-crossings merge and disappear. Such scale variant behavior is important information to represent because it is not easily predicted from lower resolution data. A scale variant image pyramid is a representation that separates this information from the more redundant and predictable scale invariant information.","PeriodicalId":421737,"journal":{"name":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Scale Variant Image Pyramids\",\"authors\":\"J. Gluckman\",\"doi\":\"10.1109/CVPR.2006.265\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-scale representations are motivated by the scale invariant properties of natural images. While many low level statistical measures, such as the local mean and variance of intensity, behave in a scale invariant manner, there are many higher order deviations from scale invariance where zero-crossings merge and disappear. Such scale variant behavior is important information to represent because it is not easily predicted from lower resolution data. A scale variant image pyramid is a representation that separates this information from the more redundant and predictable scale invariant information.\",\"PeriodicalId\":421737,\"journal\":{\"name\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2006.265\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2006.265","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

多尺度表示的动机是自然图像的尺度不变性。虽然许多低水平的统计度量,如强度的局部平均值和方差,表现为尺度不变性,但有许多高阶偏离尺度不变性,其中零交叉合并并消失。这种尺度变化的行为是重要的信息,因为它不容易从低分辨率的数据预测。尺度变化图像金字塔是一种表示,它将这些信息与更冗余和可预测的尺度不变信息分开。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Scale Variant Image Pyramids
Multi-scale representations are motivated by the scale invariant properties of natural images. While many low level statistical measures, such as the local mean and variance of intensity, behave in a scale invariant manner, there are many higher order deviations from scale invariance where zero-crossings merge and disappear. Such scale variant behavior is important information to represent because it is not easily predicted from lower resolution data. A scale variant image pyramid is a representation that separates this information from the more redundant and predictable scale invariant information.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Dynamic Bayesian Network Model for Autonomous 3D Reconstruction from a Single Indoor Image Efficient Maximally Stable Extremal Region (MSER) Tracking Transformation invariant component analysis for binary images Region-Tree Based Stereo Using Dynamic Programming Optimization Probabilistic 3D Polyp Detection in CT Images: The Role of Sample Alignment
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1