{"title":"变几何涡轮增压柴油机的模糊自适应控制","authors":"M. Dotoli, P. Lino","doi":"10.1109/ISIE.2002.1025977","DOIUrl":null,"url":null,"abstract":"A fuzzy control approach for the adjustment of the boost pressure of a variable geometry, turbine (VGT) supercharged diesel engine is proposed. The VGT adapts the boost pressure to the target reference for different engine speeds by adjusting the turbine blades, resulting in a reduction of both fuel consumption and gas emissions, while preserving efficiency. We design an adaptive fuzzy control law according to the following steps: first, a standard PI controller is devised, then an equivalent fuzzy controller is built, finally the fuzzy controller is made nonlinear by tuning its input/output parameters using an optimization algorithm. Further, modification of the membership functions is investigated. A large number of simulations on a zero-dimensional model of the engine prove the effectiveness of the proposed control strategy with reference to stability and transient performance in comparison with standard PI techniques.","PeriodicalId":330283,"journal":{"name":"Industrial Electronics, 2002. ISIE 2002. Proceedings of the 2002 IEEE International Symposium on","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fuzzy adaptive control of a variable geometry turbocharged diesel engine\",\"authors\":\"M. Dotoli, P. Lino\",\"doi\":\"10.1109/ISIE.2002.1025977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A fuzzy control approach for the adjustment of the boost pressure of a variable geometry, turbine (VGT) supercharged diesel engine is proposed. The VGT adapts the boost pressure to the target reference for different engine speeds by adjusting the turbine blades, resulting in a reduction of both fuel consumption and gas emissions, while preserving efficiency. We design an adaptive fuzzy control law according to the following steps: first, a standard PI controller is devised, then an equivalent fuzzy controller is built, finally the fuzzy controller is made nonlinear by tuning its input/output parameters using an optimization algorithm. Further, modification of the membership functions is investigated. A large number of simulations on a zero-dimensional model of the engine prove the effectiveness of the proposed control strategy with reference to stability and transient performance in comparison with standard PI techniques.\",\"PeriodicalId\":330283,\"journal\":{\"name\":\"Industrial Electronics, 2002. ISIE 2002. Proceedings of the 2002 IEEE International Symposium on\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Electronics, 2002. ISIE 2002. Proceedings of the 2002 IEEE International Symposium on\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIE.2002.1025977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Electronics, 2002. ISIE 2002. Proceedings of the 2002 IEEE International Symposium on","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2002.1025977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fuzzy adaptive control of a variable geometry turbocharged diesel engine
A fuzzy control approach for the adjustment of the boost pressure of a variable geometry, turbine (VGT) supercharged diesel engine is proposed. The VGT adapts the boost pressure to the target reference for different engine speeds by adjusting the turbine blades, resulting in a reduction of both fuel consumption and gas emissions, while preserving efficiency. We design an adaptive fuzzy control law according to the following steps: first, a standard PI controller is devised, then an equivalent fuzzy controller is built, finally the fuzzy controller is made nonlinear by tuning its input/output parameters using an optimization algorithm. Further, modification of the membership functions is investigated. A large number of simulations on a zero-dimensional model of the engine prove the effectiveness of the proposed control strategy with reference to stability and transient performance in comparison with standard PI techniques.