基于多模态传感器融合学习的环境依赖深度增强

Kuya Takami, Taeyoung Lee
{"title":"基于多模态传感器融合学习的环境依赖深度增强","authors":"Kuya Takami, Taeyoung Lee","doi":"10.1109/IRC.2018.00049","DOIUrl":null,"url":null,"abstract":"This paper presents a new learning based multimodal sensing paradigm within a probabilistic framework to improve the depth image measurements of an RGB-D camera. The proposed approach uses an RGB-D camera and laser range finder to provide an improved depth image using convolutional neural network (CNN) approximation within a probabilistic inference framework. Synchronized RGB-D and laser measurements are collected in an environment to train a model, which is then used for depth image accuracy improvements and sensor range extension. The model exploits additional RGB information, which contains depth cues, to enhance the accuracy of pixel level measurements. A computationally efficient implementation of the CNN allows the model to train while exploring an unknown area to provide improved depth image measurements. The approach yields depth images containing spatial information far beyond the suggested operational limits. We demonstrate a nearly three-fold depth range extension (3:5m to 10m) while maintaining similar camera accuracy at the maximum range. The mean absolute error is also reduced from the original depth image by a factor of six. The efficacy of this approach is demonstrated in an unstructured office space.","PeriodicalId":416113,"journal":{"name":"2018 Second IEEE International Conference on Robotic Computing (IRC)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Environment-Dependent Depth Enhancement with Multi-modal Sensor Fusion Learning\",\"authors\":\"Kuya Takami, Taeyoung Lee\",\"doi\":\"10.1109/IRC.2018.00049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new learning based multimodal sensing paradigm within a probabilistic framework to improve the depth image measurements of an RGB-D camera. The proposed approach uses an RGB-D camera and laser range finder to provide an improved depth image using convolutional neural network (CNN) approximation within a probabilistic inference framework. Synchronized RGB-D and laser measurements are collected in an environment to train a model, which is then used for depth image accuracy improvements and sensor range extension. The model exploits additional RGB information, which contains depth cues, to enhance the accuracy of pixel level measurements. A computationally efficient implementation of the CNN allows the model to train while exploring an unknown area to provide improved depth image measurements. The approach yields depth images containing spatial information far beyond the suggested operational limits. We demonstrate a nearly three-fold depth range extension (3:5m to 10m) while maintaining similar camera accuracy at the maximum range. The mean absolute error is also reduced from the original depth image by a factor of six. The efficacy of this approach is demonstrated in an unstructured office space.\",\"PeriodicalId\":416113,\"journal\":{\"name\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Second IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC.2018.00049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Second IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC.2018.00049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的基于概率框架的多模态感知学习范式,以改善RGB-D相机的深度图像测量。该方法使用RGB-D相机和激光测距仪,在概率推理框架内使用卷积神经网络(CNN)近似提供改进的深度图像。在环境中收集同步RGB-D和激光测量数据以训练模型,然后将其用于深度图像精度提高和传感器范围扩展。该模型利用额外的RGB信息,其中包含深度线索,以提高像素级测量的准确性。CNN的高效计算实现允许模型在探索未知区域的同时进行训练,以提供改进的深度图像测量。该方法产生的深度图像包含的空间信息远远超出了建议的操作限制。我们展示了近三倍的深度范围扩展(3:5m到10m),同时在最大范围内保持类似的相机精度。平均绝对误差也比原始深度图像减少了六倍。这种方法的有效性在非结构化的办公空间中得到了证明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Environment-Dependent Depth Enhancement with Multi-modal Sensor Fusion Learning
This paper presents a new learning based multimodal sensing paradigm within a probabilistic framework to improve the depth image measurements of an RGB-D camera. The proposed approach uses an RGB-D camera and laser range finder to provide an improved depth image using convolutional neural network (CNN) approximation within a probabilistic inference framework. Synchronized RGB-D and laser measurements are collected in an environment to train a model, which is then used for depth image accuracy improvements and sensor range extension. The model exploits additional RGB information, which contains depth cues, to enhance the accuracy of pixel level measurements. A computationally efficient implementation of the CNN allows the model to train while exploring an unknown area to provide improved depth image measurements. The approach yields depth images containing spatial information far beyond the suggested operational limits. We demonstrate a nearly three-fold depth range extension (3:5m to 10m) while maintaining similar camera accuracy at the maximum range. The mean absolute error is also reduced from the original depth image by a factor of six. The efficacy of this approach is demonstrated in an unstructured office space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning a Set of Interrelated Tasks by Using Sequences of Motor Policies for a Strategic Intrinsically Motivated Learner Improving Code Quality in ROS Packages Using a Temporal Extension of First-Order Logic Rapid Qualification of Mereotopological Relationships Using Signed Distance Fields Towards a Multi-mission QoS and Energy Manager for Autonomous Mobile Robots A Computational Framework for Complementary Situational Awareness (CSA) in Surgical Assistant Robots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1