收缩流体细丝凝固过程的数值研究

Binh D. Pham, Truong V. Vu, Lien V. T. Nguyen, Cuong T. Nguyen, Hoe D. Nguyen, Vinh Phu Nguyen, Hung V. Vu
{"title":"收缩流体细丝凝固过程的数值研究","authors":"Binh D. Pham, Truong V. Vu, Lien V. T. Nguyen, Cuong T. Nguyen, Hoe D. Nguyen, Vinh Phu Nguyen, Hung V. Vu","doi":"10.15625/0866-7136/16393","DOIUrl":null,"url":null,"abstract":"In this study, the retraction and solidification of a fluid filament are studied by a front-tracking method/finite difference scheme. The interface between two phases is handled by connected points (Lagrangian grid), which move on a fixed grid domain (Eulerian grid). The Navier-Stokes and energy equations are solved to simulate the problem. Initially, the fluid filament has a shape as half of a cylindrical capsule contact with a cold flat surface. We consider the effect of the aspect ratio (Ar) on the solidification of the fluid filament. It is found that an increase in the aspect ratio (Ar) in the range of 2 – 14 causes the retraction length to increase. The rate of the solidification of a fluid filament decreases when the Ar ratio increases. The solidification time, the solidification height and the tip angle of the fluid filament under the influence of the aspect ratio are also considered. After complete solidification, a small protrusion on the top of the solidified fluid filament is found.","PeriodicalId":239329,"journal":{"name":"Vietnam Journal of Mechanics","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A numerical study of the solidification process of a retracting fluid filament\",\"authors\":\"Binh D. Pham, Truong V. Vu, Lien V. T. Nguyen, Cuong T. Nguyen, Hoe D. Nguyen, Vinh Phu Nguyen, Hung V. Vu\",\"doi\":\"10.15625/0866-7136/16393\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, the retraction and solidification of a fluid filament are studied by a front-tracking method/finite difference scheme. The interface between two phases is handled by connected points (Lagrangian grid), which move on a fixed grid domain (Eulerian grid). The Navier-Stokes and energy equations are solved to simulate the problem. Initially, the fluid filament has a shape as half of a cylindrical capsule contact with a cold flat surface. We consider the effect of the aspect ratio (Ar) on the solidification of the fluid filament. It is found that an increase in the aspect ratio (Ar) in the range of 2 – 14 causes the retraction length to increase. The rate of the solidification of a fluid filament decreases when the Ar ratio increases. The solidification time, the solidification height and the tip angle of the fluid filament under the influence of the aspect ratio are also considered. After complete solidification, a small protrusion on the top of the solidified fluid filament is found.\",\"PeriodicalId\":239329,\"journal\":{\"name\":\"Vietnam Journal of Mechanics\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Vietnam Journal of Mechanics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15625/0866-7136/16393\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vietnam Journal of Mechanics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15625/0866-7136/16393","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文采用前沿跟踪法/有限差分格式研究了流体细丝的收缩和凝固过程。两个相位之间的界面由连接点(拉格朗日网格)处理,这些点在固定的网格域(欧拉网格)上移动。通过求解Navier-Stokes方程和能量方程来模拟该问题。最初,流体细丝的形状是与冷平面接触的圆柱形胶囊的一半。我们考虑了长径比(Ar)对流体长丝凝固的影响。结果表明,在2 ~ 14范围内,增大宽高比(Ar),会导致缩回长度增大。随着氩比的增加,流体细丝的凝固速率降低。考虑了长径比对凝固时间、凝固高度和凝固尖端角的影响。在完全凝固后,在凝固流体细丝的顶部发现一个小的突起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A numerical study of the solidification process of a retracting fluid filament
In this study, the retraction and solidification of a fluid filament are studied by a front-tracking method/finite difference scheme. The interface between two phases is handled by connected points (Lagrangian grid), which move on a fixed grid domain (Eulerian grid). The Navier-Stokes and energy equations are solved to simulate the problem. Initially, the fluid filament has a shape as half of a cylindrical capsule contact with a cold flat surface. We consider the effect of the aspect ratio (Ar) on the solidification of the fluid filament. It is found that an increase in the aspect ratio (Ar) in the range of 2 – 14 causes the retraction length to increase. The rate of the solidification of a fluid filament decreases when the Ar ratio increases. The solidification time, the solidification height and the tip angle of the fluid filament under the influence of the aspect ratio are also considered. After complete solidification, a small protrusion on the top of the solidified fluid filament is found.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of small punch test to estimate mechanical behaviour of SUS304 austenitic stainless steel Size-dependent nonlinear bending of microbeams based on a third-order shear deformation theory Wave propagation in context of Moore–Gibson–Thompson thermoelasticity with Klein–Gordon nonlocality Application of newly proposed hardening laws for structural steel rods Proportional Topology Optimization algorithm with virtual elements for multi-material problems considering mass and cost constraints
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1