基于粒子群优化的紧急系统辨识

M. S. Voss, X. Feng
{"title":"基于粒子群优化的紧急系统辨识","authors":"M. S. Voss, X. Feng","doi":"10.1117/12.446767","DOIUrl":null,"url":null,"abstract":"Complex Adaptive Structures can be viewed as a combination of Complex Adaptive Systems and fully integrated autonomous Smart Structures. Traditionally when designing a structure, one combines rules of thumb with theoretical results to develop an acceptable solution. This methodology will have to be extended for Complex Adaptive Structures, since they, by definition, will participate in their own design. In this paper we introduce a new methodology for Emergent System Identification that is concerned with combining the methodologies of self-organizing functional networks (GMDH - Alexy G. Ivakhnenko), Particle Swarm Optimization (PSO - James Kennedy and Russell C. Eberhart) and Genetic Programming (GP - John Koza). This paper will concentrate on the utilization of Particle Swarm Optimization in this effort and discuss how Particle Swarm Optimization relates to our ultimate goal of emergent self-organizing functional networks that can be used to identify overlapping internal structural models. The ability for Complex Adaptive Structures to identify emerging internal models will be a key component for their success.","PeriodicalId":341144,"journal":{"name":"Complex Adaptive Structures","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Emergent system identification using particle swarm optimization\",\"authors\":\"M. S. Voss, X. Feng\",\"doi\":\"10.1117/12.446767\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Complex Adaptive Structures can be viewed as a combination of Complex Adaptive Systems and fully integrated autonomous Smart Structures. Traditionally when designing a structure, one combines rules of thumb with theoretical results to develop an acceptable solution. This methodology will have to be extended for Complex Adaptive Structures, since they, by definition, will participate in their own design. In this paper we introduce a new methodology for Emergent System Identification that is concerned with combining the methodologies of self-organizing functional networks (GMDH - Alexy G. Ivakhnenko), Particle Swarm Optimization (PSO - James Kennedy and Russell C. Eberhart) and Genetic Programming (GP - John Koza). This paper will concentrate on the utilization of Particle Swarm Optimization in this effort and discuss how Particle Swarm Optimization relates to our ultimate goal of emergent self-organizing functional networks that can be used to identify overlapping internal structural models. The ability for Complex Adaptive Structures to identify emerging internal models will be a key component for their success.\",\"PeriodicalId\":341144,\"journal\":{\"name\":\"Complex Adaptive Structures\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Adaptive Structures\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.446767\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Adaptive Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.446767","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

复杂自适应结构可以看作是复杂自适应系统和完全集成的自主智能结构的结合。传统上,当设计一个结构时,人们将经验法则与理论结果结合起来,以开发一个可接受的解决方案。这种方法必须扩展到复杂自适应结构,因为根据定义,它们将参与自己的设计。本文介绍了一种结合自组织功能网络(GMDH - Alexy G. Ivakhnenko)、粒子群优化(PSO - James Kennedy和Russell C. Eberhart)和遗传规划(GP - John Koza)方法的紧急系统识别新方法。本文将集中讨论粒子群优化在这方面的应用,并讨论粒子群优化如何与我们的最终目标有关,即可用于识别重叠内部结构模型的紧急自组织功能网络。复杂自适应结构识别新兴内部模型的能力将是其成功的关键组成部分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Emergent system identification using particle swarm optimization
Complex Adaptive Structures can be viewed as a combination of Complex Adaptive Systems and fully integrated autonomous Smart Structures. Traditionally when designing a structure, one combines rules of thumb with theoretical results to develop an acceptable solution. This methodology will have to be extended for Complex Adaptive Structures, since they, by definition, will participate in their own design. In this paper we introduce a new methodology for Emergent System Identification that is concerned with combining the methodologies of self-organizing functional networks (GMDH - Alexy G. Ivakhnenko), Particle Swarm Optimization (PSO - James Kennedy and Russell C. Eberhart) and Genetic Programming (GP - John Koza). This paper will concentrate on the utilization of Particle Swarm Optimization in this effort and discuss how Particle Swarm Optimization relates to our ultimate goal of emergent self-organizing functional networks that can be used to identify overlapping internal structural models. The ability for Complex Adaptive Structures to identify emerging internal models will be a key component for their success.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Approach to sequence DNA without tagging Designing mixed-metal supramolecular complexes Emergent system identification using particle swarm optimization Comments on the physical basis of the active materials concept Porphodimethenes/porphyrins: redox-switchable tetrapyrrolic macrocycles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1