基于模糊的电能质量抑制有源滤波器

Khan Arshad Naushad Ahmed, K. C. Obula Reddy, P. Bhakre
{"title":"基于模糊的电能质量抑制有源滤波器","authors":"Khan Arshad Naushad Ahmed, K. C. Obula Reddy, P. Bhakre","doi":"10.1109/ICSCAN.2018.8541247","DOIUrl":null,"url":null,"abstract":"Active filters are widely used in electrical distribution system for reactive power compensation and voltage / current harmonic elimination. In this paper, a fuzzy logic controlled, three-phase shunt active filter to improve power quality by compensating reactive power and current harmonics required by a nonlinear load is presented. PI regulator is replaced by fuzzy logic controller to improve the dynamic performance of shunt active filter under varying load conditions. The advantage of fuzzy control is that it is based on defined linguistic rules and does not require any mathematical model of the system unlike the other traditional controller. The compensation process is based on source current sensing only, an approach different from conventional methods. The performance of fuzzy logic controller is compared with PI controller under dynamic load conditions. Simulated studies show that fuzzy controller is found suitable for steady state and transient conditions of load.","PeriodicalId":378798,"journal":{"name":"2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Fuzzy Based Active Filter For Power Quality Mitigation\",\"authors\":\"Khan Arshad Naushad Ahmed, K. C. Obula Reddy, P. Bhakre\",\"doi\":\"10.1109/ICSCAN.2018.8541247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Active filters are widely used in electrical distribution system for reactive power compensation and voltage / current harmonic elimination. In this paper, a fuzzy logic controlled, three-phase shunt active filter to improve power quality by compensating reactive power and current harmonics required by a nonlinear load is presented. PI regulator is replaced by fuzzy logic controller to improve the dynamic performance of shunt active filter under varying load conditions. The advantage of fuzzy control is that it is based on defined linguistic rules and does not require any mathematical model of the system unlike the other traditional controller. The compensation process is based on source current sensing only, an approach different from conventional methods. The performance of fuzzy logic controller is compared with PI controller under dynamic load conditions. Simulated studies show that fuzzy controller is found suitable for steady state and transient conditions of load.\",\"PeriodicalId\":378798,\"journal\":{\"name\":\"2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSCAN.2018.8541247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on System, Computation, Automation and Networking (ICSCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSCAN.2018.8541247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

有源滤波器广泛用于配电系统的无功补偿和电压电流谐波消除。本文提出了一种模糊逻辑控制的三相并联有源滤波器,通过补偿非线性负载所需的无功功率和电流谐波来改善电能质量。用模糊控制器代替PI调节器,提高了并联有源滤波器在变负载条件下的动态性能。模糊控制的优点是它基于定义的语言规则,不像其他传统控制器那样需要系统的任何数学模型。与传统的补偿方法不同,补偿过程仅基于源电流传感。比较了模糊控制器与PI控制器在动态负载条件下的性能。仿真研究表明,模糊控制器适用于负载的稳态和暂态工况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fuzzy Based Active Filter For Power Quality Mitigation
Active filters are widely used in electrical distribution system for reactive power compensation and voltage / current harmonic elimination. In this paper, a fuzzy logic controlled, three-phase shunt active filter to improve power quality by compensating reactive power and current harmonics required by a nonlinear load is presented. PI regulator is replaced by fuzzy logic controller to improve the dynamic performance of shunt active filter under varying load conditions. The advantage of fuzzy control is that it is based on defined linguistic rules and does not require any mathematical model of the system unlike the other traditional controller. The compensation process is based on source current sensing only, an approach different from conventional methods. The performance of fuzzy logic controller is compared with PI controller under dynamic load conditions. Simulated studies show that fuzzy controller is found suitable for steady state and transient conditions of load.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improvised Algorithm For Computer Vision Based Cashew Grading System Using Deep CNN Fuzzy Based Active Filter For Power Quality Mitigation Access Level Privacy Protection for Security ANALYSING TWO DIMENSIONAL PROGRESSION OF CRACKS IN BUILDINGS USING SOFTWARE A Survey report of the firefighters on fire hazards of PV fire
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1