移动图像匹配的树直方图编码

David M. Chen, Sam S. Tsai, V. Chandrasekhar, Gabriel Takacs, J. Singh, B. Girod
{"title":"移动图像匹配的树直方图编码","authors":"David M. Chen, Sam S. Tsai, V. Chandrasekhar, Gabriel Takacs, J. Singh, B. Girod","doi":"10.1109/DCC.2009.33","DOIUrl":null,"url":null,"abstract":"For mobile image matching applications, a mobile device captures a query image, extracts descriptive features, and transmits these features wirelessly to a server. The server recognizes the query image by comparing the extracted features to its database and returns information associated with the recognition result. For slow links, query feature compression is crucial for low-latency retrieval. Previous image retrieval systems transmit compressed feature descriptors, which is well suited for pairwise image matching. For fast retrieval from large databases, however, scalable vocabulary trees are commonly employed. In this paper, we propose a rate-efficient codec designed for tree-based retrieval. By encoding a tree histogram, our codec can achieve a more than 5x rate reduction compared to sending compressed feature descriptors. By discarding the order amongst a list of features, histogram coding requires 1.5x lower rate than sending a tree node index for every feature. A statistical analysis is performed to study how the entropy of encoded symbols varies with tree depth and the number of features.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"146 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"111","resultStr":"{\"title\":\"Tree Histogram Coding for Mobile Image Matching\",\"authors\":\"David M. Chen, Sam S. Tsai, V. Chandrasekhar, Gabriel Takacs, J. Singh, B. Girod\",\"doi\":\"10.1109/DCC.2009.33\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For mobile image matching applications, a mobile device captures a query image, extracts descriptive features, and transmits these features wirelessly to a server. The server recognizes the query image by comparing the extracted features to its database and returns information associated with the recognition result. For slow links, query feature compression is crucial for low-latency retrieval. Previous image retrieval systems transmit compressed feature descriptors, which is well suited for pairwise image matching. For fast retrieval from large databases, however, scalable vocabulary trees are commonly employed. In this paper, we propose a rate-efficient codec designed for tree-based retrieval. By encoding a tree histogram, our codec can achieve a more than 5x rate reduction compared to sending compressed feature descriptors. By discarding the order amongst a list of features, histogram coding requires 1.5x lower rate than sending a tree node index for every feature. A statistical analysis is performed to study how the entropy of encoded symbols varies with tree depth and the number of features.\",\"PeriodicalId\":377880,\"journal\":{\"name\":\"2009 Data Compression Conference\",\"volume\":\"146 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"111\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2009.33\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2009.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 111

摘要

对于移动图像匹配应用,移动设备捕获查询图像,提取描述性特征,并将这些特征无线传输到服务器。服务器通过将提取的特征与数据库进行比较来识别查询图像,并返回与识别结果相关的信息。对于慢速链接,查询特征压缩对于低延迟检索至关重要。以往的图像检索系统传输压缩特征描述符,非常适合于图像的两两匹配。然而,为了从大型数据库中快速检索,通常使用可伸缩的词汇树。在本文中,我们提出了一种基于树检索的高效率编解码器。通过编码树直方图,与发送压缩特征描述符相比,我们的编解码器可以实现5倍以上的速率降低。通过丢弃特征列表中的顺序,直方图编码比为每个特征发送树节点索引所需的速率低1.5倍。通过统计分析,研究了编码符号的熵随树深度和特征个数的变化规律。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Tree Histogram Coding for Mobile Image Matching
For mobile image matching applications, a mobile device captures a query image, extracts descriptive features, and transmits these features wirelessly to a server. The server recognizes the query image by comparing the extracted features to its database and returns information associated with the recognition result. For slow links, query feature compression is crucial for low-latency retrieval. Previous image retrieval systems transmit compressed feature descriptors, which is well suited for pairwise image matching. For fast retrieval from large databases, however, scalable vocabulary trees are commonly employed. In this paper, we propose a rate-efficient codec designed for tree-based retrieval. By encoding a tree histogram, our codec can achieve a more than 5x rate reduction compared to sending compressed feature descriptors. By discarding the order amongst a list of features, histogram coding requires 1.5x lower rate than sending a tree node index for every feature. A statistical analysis is performed to study how the entropy of encoded symbols varies with tree depth and the number of features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analog Joint Source Channel Coding Using Space-Filling Curves and MMSE Decoding Tree Histogram Coding for Mobile Image Matching Clustered Reversible-KLT for Progressive Lossy-to-Lossless 3d Image Coding Optimized Source-Channel Coding of Video Signals in Packet Loss Environments New Families and New Members of Integer Sequence Based Coding Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1