基于组合神经网络的航空材料需求预测

Penghui Niu, Yu Tang, Zhen Wang, Yitian Zhu
{"title":"基于组合神经网络的航空材料需求预测","authors":"Penghui Niu, Yu Tang, Zhen Wang, Yitian Zhu","doi":"10.1109/ICEDME50972.2020.00142","DOIUrl":null,"url":null,"abstract":"Accurate forecast of air material demand can not only improve the refinement degree of air material support, but also increase the predictability of air material support, and lay the foundation for completing various flight missions. This paper makes full use of the self-adaptive, self-organizing and self-learning ability of the artificial neural network, and puts forward a combined forecasting model based on LVQ neural network, Elman neural network and SOM neural network. Using entropy theory, the weight coefficients of each forecast method are determined. The example proves that the method has good effect.","PeriodicalId":155375,"journal":{"name":"2020 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Air Material Demand Forecast Based on Combined Neural Network\",\"authors\":\"Penghui Niu, Yu Tang, Zhen Wang, Yitian Zhu\",\"doi\":\"10.1109/ICEDME50972.2020.00142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate forecast of air material demand can not only improve the refinement degree of air material support, but also increase the predictability of air material support, and lay the foundation for completing various flight missions. This paper makes full use of the self-adaptive, self-organizing and self-learning ability of the artificial neural network, and puts forward a combined forecasting model based on LVQ neural network, Elman neural network and SOM neural network. Using entropy theory, the weight coefficients of each forecast method are determined. The example proves that the method has good effect.\",\"PeriodicalId\":155375,\"journal\":{\"name\":\"2020 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEDME50972.2020.00142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 3rd International Conference on Electron Device and Mechanical Engineering (ICEDME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEDME50972.2020.00142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

准确预测航空物资需求,不仅可以提高航空物资保障的精细化程度,还可以增加航空物资保障的可预见性,为完成各项飞行任务奠定基础。本文充分利用人工神经网络的自适应、自组织和自学习能力,提出了一种基于LVQ神经网络、Elman神经网络和SOM神经网络的组合预测模型。利用熵理论确定了各预测方法的权重系数。实例表明,该方法具有良好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Air Material Demand Forecast Based on Combined Neural Network
Accurate forecast of air material demand can not only improve the refinement degree of air material support, but also increase the predictability of air material support, and lay the foundation for completing various flight missions. This paper makes full use of the self-adaptive, self-organizing and self-learning ability of the artificial neural network, and puts forward a combined forecasting model based on LVQ neural network, Elman neural network and SOM neural network. Using entropy theory, the weight coefficients of each forecast method are determined. The example proves that the method has good effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Labeled free Malachite Green immunosensor based on chitosan and gold nano particles Design of Intelligent Unlocking System in Computer Room Based on Embedded Technology Investigation on automatic control system of cyclic pressure test for curtain wall Air Material Demand Forecast Based on Combined Neural Network Preparation and performance of polypropylene based building template pellicle
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1