连续最近邻查询的概率过滤协议

Jianpeng Zhu, Jian Jin, Ying Wang
{"title":"连续最近邻查询的概率过滤协议","authors":"Jianpeng Zhu, Jian Jin, Ying Wang","doi":"10.1109/YCICT.2009.5382333","DOIUrl":null,"url":null,"abstract":"Emerging location-based application and sensor monitoring management system collect user's locations with limited power, which cannot report very accurate position values. An important query is the Continuous Nearest-Neighbor Query (CNNQ), which returns the closest mobile object given a query point over inaccurate location data collected from positioning devices. This paper proposes the Probabilistic Threshold filter and its pruning algorithm for CNNQ over imperfect data to utilize energy efficiently, which returns sets of objects that satisfy the query with probabilities higher than some threshold P. Probabilistic filter, Scenario analyzing and pruning algorithm employed here can handle CNNQ wisely to avoid computational and I/O expensive evaluation. The algorithm can be applied in Global Positioning System, Military Reconnaissance, Communication Technique, Traffic and Transportation Management etc.","PeriodicalId":138803,"journal":{"name":"2009 IEEE Youth Conference on Information, Computing and Telecommunication","volume":"51 1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A probabilistic filter protocol for Continuous Nearest-Neighbor Query\",\"authors\":\"Jianpeng Zhu, Jian Jin, Ying Wang\",\"doi\":\"10.1109/YCICT.2009.5382333\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emerging location-based application and sensor monitoring management system collect user's locations with limited power, which cannot report very accurate position values. An important query is the Continuous Nearest-Neighbor Query (CNNQ), which returns the closest mobile object given a query point over inaccurate location data collected from positioning devices. This paper proposes the Probabilistic Threshold filter and its pruning algorithm for CNNQ over imperfect data to utilize energy efficiently, which returns sets of objects that satisfy the query with probabilities higher than some threshold P. Probabilistic filter, Scenario analyzing and pruning algorithm employed here can handle CNNQ wisely to avoid computational and I/O expensive evaluation. The algorithm can be applied in Global Positioning System, Military Reconnaissance, Communication Technique, Traffic and Transportation Management etc.\",\"PeriodicalId\":138803,\"journal\":{\"name\":\"2009 IEEE Youth Conference on Information, Computing and Telecommunication\",\"volume\":\"51 1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Youth Conference on Information, Computing and Telecommunication\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/YCICT.2009.5382333\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Youth Conference on Information, Computing and Telecommunication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/YCICT.2009.5382333","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

新兴的基于位置的应用程序和传感器监控管理系统以有限的功率采集用户的位置,无法报告非常准确的位置值。一个重要的查询是连续最近邻查询(CNNQ),它在给定从定位设备收集的不准确位置数据的查询点上返回最近的移动对象。本文针对不完全CNNQ提出了概率阈值滤波及其剪枝算法,以有效地利用能量,返回概率高于某个阈值p的满足查询的对象集。本文采用概率滤波、场景分析和剪枝算法,可以明智地处理CNNQ,避免计算和I/O昂贵的评估。该算法可应用于全球定位系统、军事侦察、通信技术、交通运输管理等领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A probabilistic filter protocol for Continuous Nearest-Neighbor Query
Emerging location-based application and sensor monitoring management system collect user's locations with limited power, which cannot report very accurate position values. An important query is the Continuous Nearest-Neighbor Query (CNNQ), which returns the closest mobile object given a query point over inaccurate location data collected from positioning devices. This paper proposes the Probabilistic Threshold filter and its pruning algorithm for CNNQ over imperfect data to utilize energy efficiently, which returns sets of objects that satisfy the query with probabilities higher than some threshold P. Probabilistic filter, Scenario analyzing and pruning algorithm employed here can handle CNNQ wisely to avoid computational and I/O expensive evaluation. The algorithm can be applied in Global Positioning System, Military Reconnaissance, Communication Technique, Traffic and Transportation Management etc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Simulation study of queues' length balance in CICQ switching fabrics Stereo-motion estimation for visual object tracking Regularization of orthogonal neural networks using fractional derivatives System identifiability for sparse and nonuniform samples via spectral analysis A probabilistic filter protocol for Continuous Nearest-Neighbor Query
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1