利用随机森林和人工神经网络模拟影响苏门答腊岛森林火灾的气候因子

Ayu Shabrina, Irma Palupi, Bambang Ari Wahyudi, I. Wahyuni, Mulya Diana Murti, A. Latifah
{"title":"利用随机森林和人工神经网络模拟影响苏门答腊岛森林火灾的气候因子","authors":"Ayu Shabrina, Irma Palupi, Bambang Ari Wahyudi, I. Wahyuni, Mulya Diana Murti, A. Latifah","doi":"10.1145/3575882.3575920","DOIUrl":null,"url":null,"abstract":"Carbon emissions produced by forest fires contribute to the global emission increase. The amount of carbon emission may indicate the severity of the fires. In a dry climate condition, forest fires become an unexpected serious problem. This paper investigates the effect of climate variables on forest fires in Sumatra from 1998 to 2018. We employ two methods, Random Forest (RF) and Artificial Neural Network (ANN) to predict the carbon emission in 2019-2021. The total emission over the domain and the fire distribution map are compared in both models. As a result, the RF model is more accurate in predicting the location and intensity in 2019 but overestimates in 2020-2021. This indicates that the RF model gives a slightly better prediction when the carbon emission is high. This result is consistent with the evaluation metrics showing that ANN mostly gives smaller errors. Also, we found that the climate variables are still relevant to describe the carbon emissions through both models with importance scores of more than .","PeriodicalId":367340,"journal":{"name":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modelling the climate factors affecting forest fire in Sumatra using Random Forest and Artificial Neural Network\",\"authors\":\"Ayu Shabrina, Irma Palupi, Bambang Ari Wahyudi, I. Wahyuni, Mulya Diana Murti, A. Latifah\",\"doi\":\"10.1145/3575882.3575920\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon emissions produced by forest fires contribute to the global emission increase. The amount of carbon emission may indicate the severity of the fires. In a dry climate condition, forest fires become an unexpected serious problem. This paper investigates the effect of climate variables on forest fires in Sumatra from 1998 to 2018. We employ two methods, Random Forest (RF) and Artificial Neural Network (ANN) to predict the carbon emission in 2019-2021. The total emission over the domain and the fire distribution map are compared in both models. As a result, the RF model is more accurate in predicting the location and intensity in 2019 but overestimates in 2020-2021. This indicates that the RF model gives a slightly better prediction when the carbon emission is high. This result is consistent with the evaluation metrics showing that ANN mostly gives smaller errors. Also, we found that the climate variables are still relevant to describe the carbon emissions through both models with importance scores of more than .\",\"PeriodicalId\":367340,\"journal\":{\"name\":\"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3575882.3575920\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 International Conference on Computer, Control, Informatics and Its Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3575882.3575920","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

森林火灾产生的碳排放导致了全球排放量的增加。碳排放的数量可能表明火灾的严重程度。在干燥的气候条件下,森林火灾成为一个意想不到的严重问题。本文研究了1998 - 2018年苏门答腊岛气候变量对森林火灾的影响。我们采用随机森林(Random Forest, RF)和人工神经网络(Artificial Neural Network, ANN)两种方法对2019-2021年的碳排放进行预测。比较了两种模型的区域总发射量和火灾分布图。因此,RF模型在预测2019年的位置和强度方面更为准确,但在预测2020-2021年的位置和强度方面存在高估。这表明当碳排放较高时,射频模型的预测效果略好。这一结果与评价指标一致,表明人工神经网络大多给出较小的误差。此外,我们发现气候变量对两种模型的碳排放描述仍然具有相关性,其重要性得分均大于。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modelling the climate factors affecting forest fire in Sumatra using Random Forest and Artificial Neural Network
Carbon emissions produced by forest fires contribute to the global emission increase. The amount of carbon emission may indicate the severity of the fires. In a dry climate condition, forest fires become an unexpected serious problem. This paper investigates the effect of climate variables on forest fires in Sumatra from 1998 to 2018. We employ two methods, Random Forest (RF) and Artificial Neural Network (ANN) to predict the carbon emission in 2019-2021. The total emission over the domain and the fire distribution map are compared in both models. As a result, the RF model is more accurate in predicting the location and intensity in 2019 but overestimates in 2020-2021. This indicates that the RF model gives a slightly better prediction when the carbon emission is high. This result is consistent with the evaluation metrics showing that ANN mostly gives smaller errors. Also, we found that the climate variables are still relevant to describe the carbon emissions through both models with importance scores of more than .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modelling the climate factors affecting forest fire in Sumatra using Random Forest and Artificial Neural Network Parallel Programming in Finite Difference Method to Solve Turing's Model of Spot Pattern Identification of Hoya Plant using Convolutional Neural Network (CNN) and Transfer Learning Android-based Forest Fire Danger Rating Information System for Early Prevention of Forest / Land fires Leak Detection using Non-Intrusive Ultrasonic Water Flowmeter Sensor in Water Distribution Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1