{"title":"几何可扩展的2端口中心抽头电感建模","authors":"W. Y. Lim, Jinglin Shi, M. A. Arasu, M. Je","doi":"10.1109/RFIT.2012.6401656","DOIUrl":null,"url":null,"abstract":"In this paper, we have developed equivalent scalable inductor models for symmetrically octagonal spiral inductors. Adjustable parameters include number of turns (Nturn), inner diameter (D), width (W) and spacing (S) of inductors with models being scaled over a wide specification range. A complementary frequency independent scalable 4-PI model are presented for accurate modeling When compared with simulation and measurement results, the models exhibit an error percentage for inductance at 1 GHz / 5 GHz at within ±10 %, error percentage for Q-peak (Peak Quality factor) is within ±20 % and error percentage for self resonant frequency (SRF) is within ±7 %.","PeriodicalId":187550,"journal":{"name":"2012 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Geometric scalable 2-port center-tap inductor modeling\",\"authors\":\"W. Y. Lim, Jinglin Shi, M. A. Arasu, M. Je\",\"doi\":\"10.1109/RFIT.2012.6401656\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we have developed equivalent scalable inductor models for symmetrically octagonal spiral inductors. Adjustable parameters include number of turns (Nturn), inner diameter (D), width (W) and spacing (S) of inductors with models being scaled over a wide specification range. A complementary frequency independent scalable 4-PI model are presented for accurate modeling When compared with simulation and measurement results, the models exhibit an error percentage for inductance at 1 GHz / 5 GHz at within ±10 %, error percentage for Q-peak (Peak Quality factor) is within ±20 % and error percentage for self resonant frequency (SRF) is within ±7 %.\",\"PeriodicalId\":187550,\"journal\":{\"name\":\"2012 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RFIT.2012.6401656\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RFIT.2012.6401656","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In this paper, we have developed equivalent scalable inductor models for symmetrically octagonal spiral inductors. Adjustable parameters include number of turns (Nturn), inner diameter (D), width (W) and spacing (S) of inductors with models being scaled over a wide specification range. A complementary frequency independent scalable 4-PI model are presented for accurate modeling When compared with simulation and measurement results, the models exhibit an error percentage for inductance at 1 GHz / 5 GHz at within ±10 %, error percentage for Q-peak (Peak Quality factor) is within ±20 % and error percentage for self resonant frequency (SRF) is within ±7 %.