可见光和红外图像中障碍物识别的信息融合

A. Apatean, A. Rogozan, A. Bensrhair
{"title":"可见光和红外图像中障碍物识别的信息融合","authors":"A. Apatean, A. Rogozan, A. Bensrhair","doi":"10.1109/ISSCS.2009.5206085","DOIUrl":null,"url":null,"abstract":"We propose the information fusion of visible and infrared images for a pedestrian-vehicle SVM-based classification. Different types of fusion methods are presented: data fusion, feature fusion, matching score fusion and decision fusion. Data - level fusion assumes that the raw information is combined at the pixel level. The fusion at the feature level produces a feature vector integrating both visual and infrared information. Matching score fusion and decision fusion combine matching scores or decisions of individual obstacle recognition modules. Comparative results showed that fusion-based obstacle recognition techniques outperformed individual visual and infrared obstacle recognizers. An important advantage of these fusion-based systems is their possibility to adapt to the environmental illumination conditions due to a weighting parameter which also controls the system's final decision. Different feature extraction and feature selection algorithms have been investigated in order to retain the best suited features for the classification process.","PeriodicalId":277587,"journal":{"name":"2009 International Symposium on Signals, Circuits and Systems","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Information fusion for obstacle recognition in visible and infrared images\",\"authors\":\"A. Apatean, A. Rogozan, A. Bensrhair\",\"doi\":\"10.1109/ISSCS.2009.5206085\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose the information fusion of visible and infrared images for a pedestrian-vehicle SVM-based classification. Different types of fusion methods are presented: data fusion, feature fusion, matching score fusion and decision fusion. Data - level fusion assumes that the raw information is combined at the pixel level. The fusion at the feature level produces a feature vector integrating both visual and infrared information. Matching score fusion and decision fusion combine matching scores or decisions of individual obstacle recognition modules. Comparative results showed that fusion-based obstacle recognition techniques outperformed individual visual and infrared obstacle recognizers. An important advantage of these fusion-based systems is their possibility to adapt to the environmental illumination conditions due to a weighting parameter which also controls the system's final decision. Different feature extraction and feature selection algorithms have been investigated in order to retain the best suited features for the classification process.\",\"PeriodicalId\":277587,\"journal\":{\"name\":\"2009 International Symposium on Signals, Circuits and Systems\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Symposium on Signals, Circuits and Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCS.2009.5206085\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Symposium on Signals, Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCS.2009.5206085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

提出了一种基于支持向量机的行人-车辆分类方法。提出了不同类型的融合方法:数据融合、特征融合、匹配分数融合和决策融合。数据级融合假定原始信息在像素级进行组合。在特征级的融合产生一个融合了视觉和红外信息的特征向量。匹配分数融合和决策融合将单个障碍识别模块的匹配分数或决策结合起来。对比结果表明,基于融合的障碍物识别技术优于单独的视觉和红外障碍物识别技术。这些基于融合的系统的一个重要优势是,由于加权参数也控制着系统的最终决策,它们可以适应环境照明条件。为了保留最适合分类过程的特征,研究了不同的特征提取和特征选择算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Information fusion for obstacle recognition in visible and infrared images
We propose the information fusion of visible and infrared images for a pedestrian-vehicle SVM-based classification. Different types of fusion methods are presented: data fusion, feature fusion, matching score fusion and decision fusion. Data - level fusion assumes that the raw information is combined at the pixel level. The fusion at the feature level produces a feature vector integrating both visual and infrared information. Matching score fusion and decision fusion combine matching scores or decisions of individual obstacle recognition modules. Comparative results showed that fusion-based obstacle recognition techniques outperformed individual visual and infrared obstacle recognizers. An important advantage of these fusion-based systems is their possibility to adapt to the environmental illumination conditions due to a weighting parameter which also controls the system's final decision. Different feature extraction and feature selection algorithms have been investigated in order to retain the best suited features for the classification process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaos modulation communication channel: A case study A 2.4 GHz high-gain low noise amplifier Modified Ω′ metric for QPP interleavers depending on SNR Information fusion for obstacle recognition in visible and infrared images Graph drawing alogorithms based module placement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1