Khayyam Pervaiz, Abdul Wahid, M. Sajid, Malik Khizar, Z. Khan, U. Qasim, N. Javaid
{"title":"水下无线传感器网络的深度和能量感知协同路由协议","authors":"Khayyam Pervaiz, Abdul Wahid, M. Sajid, Malik Khizar, Z. Khan, U. Qasim, N. Javaid","doi":"10.1109/CISIS.2016.108","DOIUrl":null,"url":null,"abstract":"In Underwater Wireless Sensor Networks (UWSNs), reliability is one of the major concerns for large number of applications. The underwater environment is very harsh and noisy. Fading is common and unavoidable, therefore achieving reliable data transfer requires innovative routing solutions. This paper presents a energy efficient cooperative routing with varying Depth threshold (Dth) called Depth and Energy Aware Cooperative Routing Protocol for UWSNs (DEAC). DEAC utilizes the broadcast nature of sensor nodes by performing cooperative routing. Optimised value of Dth is selected for a source node and varied according to the number of alive neighbors of that source node. Potential destination node is selected from outside of Dth and a potential relay node is selected from inside. Destination and relay are selected on the basis of depth, residual energy and link quality between sensor nodes. Source node forwards a data packet to destination node from two ways, directly from source node to destination node and via relay to destination node. At destination, two data packets received from source node and relay node are combined using Maximum Ratio Combining Technique (MRC). Simulation results show that DEAC achieves better performance over some existing depth based routing protocols in terms of throughput, packet Acceptance ratio, packet drop and energy consumption.","PeriodicalId":249236,"journal":{"name":"2016 10th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS)","volume":"160 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"DEAC: Depth and Energy Aware Cooperative Routing Protocol for Underwater Wireless Sensor Networks\",\"authors\":\"Khayyam Pervaiz, Abdul Wahid, M. Sajid, Malik Khizar, Z. Khan, U. Qasim, N. Javaid\",\"doi\":\"10.1109/CISIS.2016.108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Underwater Wireless Sensor Networks (UWSNs), reliability is one of the major concerns for large number of applications. The underwater environment is very harsh and noisy. Fading is common and unavoidable, therefore achieving reliable data transfer requires innovative routing solutions. This paper presents a energy efficient cooperative routing with varying Depth threshold (Dth) called Depth and Energy Aware Cooperative Routing Protocol for UWSNs (DEAC). DEAC utilizes the broadcast nature of sensor nodes by performing cooperative routing. Optimised value of Dth is selected for a source node and varied according to the number of alive neighbors of that source node. Potential destination node is selected from outside of Dth and a potential relay node is selected from inside. Destination and relay are selected on the basis of depth, residual energy and link quality between sensor nodes. Source node forwards a data packet to destination node from two ways, directly from source node to destination node and via relay to destination node. At destination, two data packets received from source node and relay node are combined using Maximum Ratio Combining Technique (MRC). Simulation results show that DEAC achieves better performance over some existing depth based routing protocols in terms of throughput, packet Acceptance ratio, packet drop and energy consumption.\",\"PeriodicalId\":249236,\"journal\":{\"name\":\"2016 10th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS)\",\"volume\":\"160 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 10th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISIS.2016.108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISIS.2016.108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
DEAC: Depth and Energy Aware Cooperative Routing Protocol for Underwater Wireless Sensor Networks
In Underwater Wireless Sensor Networks (UWSNs), reliability is one of the major concerns for large number of applications. The underwater environment is very harsh and noisy. Fading is common and unavoidable, therefore achieving reliable data transfer requires innovative routing solutions. This paper presents a energy efficient cooperative routing with varying Depth threshold (Dth) called Depth and Energy Aware Cooperative Routing Protocol for UWSNs (DEAC). DEAC utilizes the broadcast nature of sensor nodes by performing cooperative routing. Optimised value of Dth is selected for a source node and varied according to the number of alive neighbors of that source node. Potential destination node is selected from outside of Dth and a potential relay node is selected from inside. Destination and relay are selected on the basis of depth, residual energy and link quality between sensor nodes. Source node forwards a data packet to destination node from two ways, directly from source node to destination node and via relay to destination node. At destination, two data packets received from source node and relay node are combined using Maximum Ratio Combining Technique (MRC). Simulation results show that DEAC achieves better performance over some existing depth based routing protocols in terms of throughput, packet Acceptance ratio, packet drop and energy consumption.